Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2021 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Electrical transport (1)
- Spin-Orbit-Torque (1)
- Spintronics (1)
- Topological Insulators (1)
- Topologischer Isolator (1)
Institute
Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D Topological Insulator HgTe
(2021)
Nature shows us only the tail of the lion. But I have no doubt that the lion belongs with it even if he cannot reveal himself all at once. Albert Einstein
In my dissertation, I addressed the question of whether the 3D topological insulator mercury telluride (3D TI HgTe) is a suitable material for spintronics applications. This question was addressed by investigating the SOTs generated by the 3D TI HgTe in an adjacent ferromagnet (Permalloy) by using the ferromagnetic resonance technique (SOT-FMR).
In the first part of the dissertation, the reader was introduced to the mathematical description of the SOTs of a hybrid system consisting of a topological insulator (TI) and a ferromagnet (FM). Furthermore, the sample preparation and the measurement setup for the SOT-FMR measurements were discussed. Our SOT-FMR measurements showed that at low temperatures (T = 4.2 K) the out-of-plane component of the torque is dominant. At room temperature, both in-plane and out-of-plane components of the torque could be observed. From the symmetry of the mixing voltage (Figs. 3.14 and 3.15) we could conclude that the 3D TI HgTe may be efficient for the generation of spin torques in the permalloy [1]. The investigations reported here showed that the SOT efficiencies generated by the 3D TI HgTe are comparable with other existent topological insulators (see Fig. 3.17). We also discussed in detail the parasitic effects (such as thermovoltages) that can contribute to the correct interpretation of the spin torque efficiencies.
Although the results reported here provide several indications that the 3D TI HgTe might be efficient in exerting spin-torques in adjacent ferromagnets [2], the reader was repeatedly made aware that parasitic effects might contaminate the correct writing and reading of the information in the ferromagnet. These effects should be taken into consideration when interpreting results in the published literature claiming high spin-orbit torque efficiencies [2–4]. The drawbacks of the SOT-FMR measurement method led to a further development of our measurement concept, in which the ferromagnet on top of the 3D TI HgTe was replaced by a
spin-valve structure. In contrast with our measurements, in this measurement setup, the current flowing through the HgTe is known and changes in the spin-valve resistance can be read via the GMR effect.
Moreover, the SOT-FMR experiments required the application of an in-plane magnetic field up to 300 mT to define the magnetization direction in the ferromagnet. Motivated by this fact, we investigated the influence of an in-plane magnetic field in the magnetoresistance of the 3D TI HgTe. The surprising results of these measurements are described in the second part of the dissertation. Although the TI studied here is non-magnetic, its transversal MR (Rxy) showed an oscillating behavior that depended on the angle between the in-plane magnetic field and the electrical current. This effect is a typical property of ferromagnetic materials and is called planar Hall effect (PHE) [5, 6]. Moreover, it was also shown that the PHE amplitude (Rxy) and the longitudinal resistance (Rxx) oscillate as a function of the in-plane magnetic field amplitude for a wide range of carrier densities of the topological insulator.
The PHE was already described in another TI material (Bi2−xSbxTe3) [7]. The authors suggested as a possible mechanism the scattering of the electron off impurities that are polarized by an in-plane magnetic field. We critically discussed this and other theoretical proposed mechanisms existent in the literature [8, 9].
In this thesis, we attempted to explain the origin of the PHE in the 3D TI HgTe by anisotropies in the band structure of this material. The k.p calculations based on 6-orbitals were able to demonstrate that an interplay between Rashba, Dresselhaus, and in-plane magnetic field deforms the Fermi contours of the camel back band of the 3D TI HgTe, which could lead to anisotropies in its conductivity. However, the magnetic fields needed to experimentally observe this effect are as
high as 40 T, i.e., one order of magnitude higher than reported in our experiments. Additionally, calculations of the DoS to assess if there is a difference in the states for Bin parallel and Bin perpendicular to the current were, so far, inconclusive. Moreover, the complicated dependence of Rashba in the p-conducting
regime of HgTe [10] makes it not straightforward the inclusion of this term in the band structure calculations.
Despite the extensive efforts to understand the origin of the galvanomagnetic effects in the 3D TI HgTe, we could not determine a clear mechanism for the origin of the PHE and the MR oscillations studied in this thesis. However, our work clarifies and excludes a few mechanisms reported in the literature as the origin of these effects in the 3D TI HgTe. The major challenge, which still needs to be overcome, is to find a model that simultaneously explains the PHE, the gate dependence, and the oscillations in the magnetoresistance of the 3D TI HgTe as a function of the in-plane magnetic field.
To conclude, the author would like to express her hope to have brought the reader closer to the complexity of the questions addressed in this thesis and to have initiated them into the art of properly conducting electrical transport measurements on topological insulators with in-plane magnetic fields.