Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (3)
Language
- English (3)
Keywords
- Chemie (1)
- Magnesium (1)
- Zink (1)
- acute kidney injury (1)
- end-stage kidney disease (1)
- genome-wide association study (1)
- rapid eGFRcrea decline (1)
Institute
Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more (“Rapid3”; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline (“CKDi25”; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
Quasirelativistic and nonrelativistic lo-valence-electronp seudopotentialsf or Ca, Sr, and Ba are presented. Results of calculations with 6s6p5d basis sets for MH, MH\(^+\) , and MH\(_2\), are compared with all-electron and 2-valence-electron pseudopotential calculations with and , without core-polarization potentials. The lo-valence-electron pseudopotential approach agrees well with all-electron calculations. It circumvents problems for the 2-valence-electron pseudopotentials arising from an incomplete separation of valence and subvalence shells in polar molecular systems due to strongly contracted occupied (n - 1 )-d orbitals. All higherlevel calculations show SrH\(_2\) and BaII\(_2\), to be bent with angles of - 140° and 120°, respectively, while CaH\(_2\) is linear with a flat potential-energy surface for the bending motion. The use of a core-polarization potential together with the 2-valence-electronp seudopotentiala pproach allows an investigation of the relative importance of core-polarization vs direct d-orbital bonding participation as reasons for the bent structures. The calculations strongly suggest that both contribute to the bending in SrH\(_2\) and BaII\(_2\). Even at the Hartree-Fock level of theory lovalence- electronp seudopotentialc alculations given reasonablea nglesw hen the potentialenergy surface is not exceedingly flat, and only moderately contracted basis sets including both compact d functions and diffuse p functions are used. The effect of core-valence correlation and the importance off functions also are discussed.
Pseudopotentials and valence basis sets to be used in calculations for organometallic compounds of zinc and magnesium have been tested in calculations for the M(CH\(_3\))\(_n\) (M = Zn, Mg; n = 1,2) molecules. Valence correlation effects are treated at the SDCI and CEPA levels. The capability of a polarization potential on zinc to account for the valence shell contracting effect of core valence correlation is studied. Properties considered are geometries, force constants, Mulliken populations, ionization potentials, atomization, and binding energies. Differences in bonding between the two dimethyl compounds are discussed.