Refine
Has Fulltext
- yes (20)
Is part of the Bibliography
- yes (20)
Document Type
- Journal article (17)
- Review (2)
- Book article / Book chapter (1)
Language
- English (20)
Keywords
DURING vertebrale development, many neurons depend for survival and differentiation on their target cells\(^{1-3}\). The best documented mediator of such a retrograde trophic action is the neurotrophin nerve growth factor (NGF)\(^1\). NGF and the other known members of tbe neurotrophin family, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT -3) and neurotrophin-4/5 (NT -4/5) are conserved as distinct genes over large evolutionary distances\(^{4 -6}\). Here we report the cloning of neurotrophin-6 (NT -6), a new member of this family from the teleost fish Xiphophorus. NT -6 distinguishes itself from the other known neurotrophins in that it is not found as a soluble protein in the medium of producing cells. The addition of heparin (but not chondroitin) effects the release of NT -6 from cell surface and extracellular matrix molecules. Recombinant purified NT -6 has a spectrum of actions similar to NGF on chick sympathetic and sensory neurons, albeit with a lower potency. NT -6 is expressed in tbe embryonie valvulla cerebelli; expression persists in some adult tissues. The interaction of NT-6 with heparin-binding molecuJes may modulate its action in the nervous system .
The period of natural cell death in the development of rodent motor neurons is followed by a period of sensitivity to axonal injury1-3. In the rat this early postnatal period of vulnerability coincides with that of very low ciliary neurotrophic factor (CNTF) levels in the sciatic nerve before CNTF increases to the high, adult levels4. The developmental time course of CNTF expression, its regional tissue distribution and its cytosolic localization (as suggested by its primary structure)4*5 favour a role for CNTF as a lesion factor rather than a target-derived neurotrophic molecule like nerve growth factor. Nevertheless CNTF exhibits neurotrophic activity in vitro on different populations of embryonic neurons6. To determine whether the vulnerability of motor neurons to axotomy in the early postnatal phase is due to insufficient availability of CNTF, we transected the axons of newborn rat motor neurons and demonstrated that iocal application of CNTF prevents the degeneration of the corresponding cell bodies.
CILIARY neurotrophic factor (CNTF) was originally characterized as a survival factor for chick ciliary neurons in vitro. More recently, it was shown to promote the survival of a variety of otherneuronal cell types and to affect the differentiation of E7 chick sympathetic neurons by inhibiting their proliferation and by inducing the expression of yasoactiYe intestinal peptide immunoreactiyity (VIP-IR). In cultures of dissociated sympathetic neurons from newborn rats, CNTF induces cholinergic differentiation as shown by increased levels of choline acetyltransferase (ChAT.
CNTF is a cytosolic molecule expressed postnatally in myelinating Schwann cells and in a subpopulation of astrocytes. Although CNTF administration prevents lesion-mediated and genetically determined motor neuron degeneration, its physiological function remained elusive. Here it is reported that abolition of CNTF gene expression by homologous recombination results in a progressive atrophy and loss of motor neurons in adult mice, which is functionally reflected by a small but significant reduction in muscle strength.
Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a variety of embryonic neurons in culture. The developmental expression of CNTF occurs clearly after the time period of the physiological cell death of CNTF-responsive neurons. This, together with the sites of expression, excludes CNTF as a target-derived neuronal survival factor, at least in rodents. However, CNTF also participates in the induction of type 2 astrocyte differentiation in vitro. Here we demonstrate that the time course of the expression of CNTF-mRNA and protein in the rat optic nerve (as evaluated by quantitative Northern blot analysis and biological activity, respectively) is compatible with such a glial differentiation function of CNTF in vivo. We also show that the type 2 astrocyte-inducing- activity previously demonstrated in optic nerve extract can be precipitated by an antiserum against CNTF. Immunohistochemical analysis of astrocytes in vitro and in vivo demonstrates that the expression of CNTF is confined to a subpopulation of type 1 astrocytes. The olfactory bulb of adult rats has comparably high levels of CNTF to the optic nerve, and here again, CNTF-immunoreactivity is localized in a subpopulation of astrocytes. However, the postnatal expression of CNTF in the olfactory bulb occurs later than in the optic nerve. In other brain regions both CNTF-mRNA and protein levels are much lower.
Ciliary neurotrophic factor (CNTF) is expressed in high quantities in Schwann cells of peripheral nerves during postnatal development of the rat. The absence of a hydrophobic leader sequence and the immunohistochemical localization of CNTF within the cytoplasm of these cells indicate that the factor might not be available to responsive neurons under physiological conditions. However, CNTF supports the survival of a variety of embryonic neurons, including spinal motoneurons in culture. Moreover we have recently demonstrated that the exogenous application of CNTF protein to the lesioned facial nerve of the newborn rat rescued these motoneurons from cell death. These results indicate that CNTF might indeed play a major role in assisting the survival of lesioned neurons in the adult peripheral nervous system. Here we demonstrate that the CNTF mRNA and protein levels and the manner in which they are regulated are compatible with such a function in lesioned peripheral neurons. In particular, immunohistochemical analysis showed significant quantities of CNTF at extracellular sites after sciatic nerve lesion. Western blots and determination of CNTF biological activity of the same nerve segments indicate that extracellular CNTF seems to be biologically active. After nerve lesion CNTF mRNA levels were reduced to <5 % in distal regions of the sciatic nerve whereas CNTF bioactivity decreased to only one third of the original before-lesion levels. A gradual reincrease in Schwann cells occurred concomitant with regeneration.
The structure of the rat ciliary neurotrophic factor (CNTF) gene and the regulation ofCNTF mRNA levels in cultured glial cells were investigated. The rat mRNA is encoded by a simple two-exon transcription unit. Sequence analysis of the region upstream of the transcription start-site did not reveal a typical TATA-box consensus sequence. Low levels of CNTF mRNA were detected in cultured Schwann cells, and CNTF mRNA was not increased by a variety of treatments. Three-week-old astrocyteenriched cell cultures from new-born rat brain contained easily detectable CNTF mRNA. In astrocyte-enriched cultures, upregulation of CNTF mRNA levels was observed after treatment with IFN-gamma. CNTF mRNA levels were down-regulated in these cells by treatments that elevate intracellular cyclic AMP and by members of the fibroblast growth factor (FGF) family. The implications of these results for potential in vivo functions of CNTF are discussed.
CILIARY neurotrophic factor (CNTF) supports the survival of embryonic motor neurons in vitro and in vivo and prevents lesion-mediated degeneration of rat motor neuron~ during early post-natal stages. Here we report that CNTF greatly reduces all the functional and morphological changes in pmnlpmn mice5, an autosomal recessive mutant leading to progressive caudo-cranial motor neuron degeneration. The first manifestations of progressive motor neuronopathy in homozygous pmnl pmn mice become apparent in the hind limbs at the end of the third post-natal week and all the mice die up to 6 or 7 weeks after birth from respiratory paralysis. Treatment with CNTF prolongs- survival- and greatly Impoves motor function of these mice. Moreover, morphological manifestations, such as loss of motor axons in the phrenic nerve and degeneration of facial motor neurons, were greatly reduced by CNTF, although the treatment did not start until the first symptoms of the disease had already become apparent and substantial degenerative changes were already present. The protective and restorative effects of CNTF in this mouse mutant give new perspectives for the treatment of human degenerative motor neuron diseases with CNTF.