Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Keywords
- Asymmetrische Synthese (1)
- Epoxidation (1)
- Epoxidierung (1)
- Katalyse (1)
- Ketone (1)
- Weitz-Scheffer Reaktion (1)
- Weitz-Scheffer reaction (1)
- biomedicine, general (1)
- environmental health (1)
- epoxidation (1)
Institute
In der vorliegenden Dissertation werden optisch aktive Hydroperoxide I als enantioselektive Oxidationsmittel in der Weitz-Scheffer-Epoxidierung von Enonen II eingesetzt. Dabei sollten zunächst die besten Reaktionsbedingungen für eine effektive asymmetrische Induktion gefunden werden, um anhand dieser den Mechanismus des enantioselektiven Sauerstofftransfers aufzuklären. In einer weiteren Studie werden Chinconin- und Chinconidin-abgeleitete optisch aktive Phasentransferkatalysatoren (PTK) IV zur asymmetrischen Epoxidierung von Enonen II mit racemischen Hydroperoxiden I genutzt, wobei vordergründig die kinetische Racematspaltung der verwendeten Hydroperoxide I untersucht werden sollte. Darauf aufbauend wurde eine höchst effektive Methode zur enantioselektiven Epoxidierung von Isoflavonen V mit kommerziell erhältlichen, achiralen Hydroperoxiden entwickelt. 1. Die Optimierung der Reaktionsbedingungen an Chalkon IIa zeigt, dass die höchste Enantioseitendifferenzierung mit (S)-(-)-1-Phenylethylhydroperoxid (Ia) und KOH in Schema A: Asymmetrische Weitz-Scheffer-Epoxidierung mit optisch aktiven Hydroperoxiden I und den Basen KOH oder DBU als Katalysatoren Acetonitril bei –40 °C möglich ist. Dabei bildet sich das (alphaS,betaR)-Epoxid IIIa in 51 Prozent ee. Im Gegensatz dazu wird in Toluol bei 20 °C mit der Base DBU das entgegengesetzt konfigurierte (alphaR,betaS)-Epoxid IIIa in einem Enantiomerenüberschuss von 40 Prozent gebildet. Die Art der Base beeinflusst demnach grundlegend den stereochemischen Verlauf der Reaktion. Um diesen Effekt mechanistisch zu ergründen wird der elektronische Charakter der Arylreste im Enon II systematisch variiert, was allerdings nur zu einer geringen Veränderung der Enantioselektivität führt. Einen größeren Einfluss auf das Ausmaß der Enantioseitendifferenzierung in dieser asymmetrischen Weitz-Scheffer-Epoxidierung hat, sowohl bei der Reaktionsführung mit DBU in Toluol als auch mit KOH in CH3CN, der sterische Anspruch des beta-Substituenten im Enon II. Aufgrund der maßgeblichen Signifikanz der Größe des beta-Substituenten wird eine Templatstruktur T+ (Abbildung A) vorgeschlagen, in der eine sterische Wechselwirkung zwischen dem beta-Substituenten des Enons II und dem Hydroperoxyanion I- den Abbildung A: Bevorzugte Anordnungen in der Templatstruktur für die KON-vermittelte und die DBU-vermittelte Epoxidierung stereochemischen Verlauf der Epoxidierung bestimmt. Das Aggregat aus Substrat, Hydroperoxid und Gegenion wird in Form eines Templats T+ durch das K+-Ion oder das protonierte Amin DBU-H+ zusammengehalten. Dadurch wird den entgegengesetzten Enantioselektivitäten Rechnung getragen, die für diese beiden Basen beobachtet werden. Aus Abbildung A wird ersichtlich, dass die unterschiedliche Größe der K+- oder DBU-H+-Kationen und des beta-Substituenten im Templat wichtig für eine effektive Diskriminierung der beiden möglichen Angriffe T+-(Si) und T+-(Re) ist. Für das relativ kleine Kaliumion dominiert die Wechselwirkung zwischen dem beta-Substituenten und dem Hydroperoxid I. Diese wird im T+-(Si)-Angriff minimiert, indem das Wasserstoffatom am stereogenen Zentrum des Hydroperoxids I auf der Seite des Enons II steht. In der Epoxidierung mit der sterisch anspruchsvolleren Base DBU tritt die Wechselwirkung zwischen DBU-H+ und dem Hydroperoxid im Templat in den Vordergrund, was den Angriff auf der Re-Seite bedingt. Demnach werden mit KOH die besten Enantioselektivitäten für große beta-Substituenten beobachtet, wohingegen für die Amin-vermittelte Epoxidierung eine große Base, wie DBU, vorteilhaft ist. Sowohl für KOH als auch für DBU als Basenkatalysatoren wird die Validität der Templatstruktur durch weitere Variation der Reaktionsbedingungen geprüft. Wenn K+ durch den Kronenether 18-Krone-6 komplexiert wird oder anstelle von DBU-H+ eine nicht-koordinierende Schwesinger Base verwendet wird, das Templat also nicht durch Koordination gebildet werden kann, werden deutlich niedrigere Enantioselektivitäten in der Epoxidierung beobachtet. Die Notwendigkeit der S-cis-Konformation des Enons II für die Bildung des Templats, wird durch Untersuchungen mit konformationell fixierten Enonen untermauert. So wird die Enantioselektivität bei der Epoxidierung eines S-cis-fixierten Enons (IIb) auf bis zu 90 Prozent ee erhöht, während sie bei einer S-trans-Fixierung des Enons deutlich auf < 5 Prozent ee abfiel. Fazit: Mit den optisch aktiven Hydroperoxiden I wird in der Weitz-Scheffer-Epoxidierung durch die Wahl geeigneter Basen, KOH oder DBU, sowohl das (alphaS,betaR)-Epoxid III (bis zu 90 Prozent ee) als auch das (alphaR,betaS)-Epoxid (bis zu 72 Prozent ee) erhalten. Welches Enantiomer überwiegt kann dabei allein durch die Wahl der Base gesteuert werden. Die Enantioseitendifferenzierung wird durch sterische Wechselwirkungen in einem Templat aus Enon II, Hydroperoxid I und den Kationen K+ oder DBU-H+ bestimmt. Die kinetische Racematspaltung chiraler Hydroperoxide I durch Weitz-Scheffer-Epoxidierung mit optisch aktiven Chinconin-basierten Phasentransferkatalysatoren (PTK) IV wird untersucht, bei der als willkommenes „Nebenprodukt" optisch aktive Isoflavonepoxide VI (Schema B) mit bis zu 92 Prozent ee entstehen. Die Racematspaltung ist Schema B: Kinetische Racematspaltung des chiralen Hydroperoxids Ia mittels Weitz-Scheffer-Epoxidierung und dem optisch aktiven PTK IV jedoch nicht effektiv, es werden ee-Werte von maximal 33 Prozent erzielt. Auf dieser Basis wird eine Methode zur asymmetrischen Epoxidierung der Isoflavonen (V) (Schema C) mit dem Schema C: Enantioselektivitäten für die Epoxidierung der Enone IIb,c und des Isoflavons Vb in Anwesenheit des PTK IV kommerziell verfügbaren Cumylhydroperoxid entwickelt, die für das Isoflavon Vb bis zu 98 Prozent ee zu Gunsten des (1aR,7aS)-Epoxids ergibt. Die hohe Enantioselektivität wird mit dem Templat A (Schema D) erklärt, in dem eine H-Brücke von der Hydroxy-Funktion des PTK IV Schema D: Wasserstoffbrückengebundene Templatstrukturen A und B zum endocyclischen Ethersauerstoffatom des Isoflavons V ausgeht. Die Relevanz einer solchen H-Brücke ist durch Methylierung der Hydroxy-Funktion des PTK IV demonstriert. Zudem ist die Wichtigkeit dieses Ethersauerstoffatoms durch die Tatsache untermauert, dass das konformationell ähnliche Enon IIc (Schema C) nahezu unselektiv epoxidiert wird (18 Prozent ee). Eine analoge H-Brücke nunmehr zum Carbonylsauerstoffatom des S-cis-fixierten Enons IIb wird als Erklärung für dessen hoch enantioselektive Epoxidierung (95 Prozent ee) postuliert (Templat B, Schema D). Fazit: Die asymmetrische Weitz-Scheffer-Epoxidierung mit dem optisch aktiven Phasentransferkatalysator IV wird zur Herstellung fast enantiomerenreiner Epoxide (bis zu 98 Prozent ee) genutzt. Für die Enantioseitendifferenzierung zeigt sich die Ausbildung einer H-Brücke zwischen PTK IV und Substrat II oder V als essentiell. In der kinetischen Racematspaltung chiraler Hydroperoxide I ist diese Epoxidierung nicht effektiv.
Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.