### Refine

#### Has Fulltext

- yes (6)

#### Is part of the Bibliography

- yes (6)

#### Document Type

- Journal article (6)

#### Language

- English (6)

#### Keywords

- mathematical modelling (3)
- Grundvorstellung (2)
- basic mental models (2)
- pedagogical content knowledge (2)
- Ableitung (1)
- STEM classroom (1)
- STEM education (1)
- STEM integration (1)
- Struktur (1)
- Testinstrument (1)

#### Institute

The concept of derivative is characterised with reference to four basic mental models. These are described as theoretical constructs based on theoretical considerations. The four basic mental models—local rate of change, tangent slope, local linearity and amplification factor—are not only quantified empirically but are also validated. To this end, a test instrument for measuring students’ characteristics of basic mental models is presented and analysed regarding quality criteria.
Mathematics students (n = 266) were tested with this instrument. The test results show that the four basic mental models of the derivative can be reconstructed among the students with different characteristics. The tangent slope has the highest agreement values across all tasks. The agreement on explanations based on the basic mental model of rate of change is not as strongly established among students as one would expect due to framework settings in the school system by means of curricula and educational standards. The basic mental model of local linearity plays a rather subordinate role. The amplification factor achieves the lowest agreement values. In addition, cluster analysis was conducted to identify different subgroups of the student population. Moreover, the test results can be attributed to characteristics of the task types as well as to the students’ previous experiences from mathematics classes by means of qualitative interpretation. These and other results of students’ basic mental models of the derivative are presented and discussed in detail.

Mathematical concepts are regularly used in media reports concerning the Covid-19 pandemic. These include growth models, which attempt to explain or predict the effectiveness of interventions and developments, as well as the reproductive factor. Our contribution has the aim of showing that basic mental models about exponential growth are important for understanding media reports of Covid-19. Furthermore, we highlight how the coronavirus pandemic can be used as a context in mathematics classrooms to help students understand that they can and should question media reports on their own, using their mathematical knowledge. Therefore, we first present the role of mathematical modelling in achieving these goals in general. The same relevance applies to the necessary basic mental models of exponential growth. Following this description, based on three topics, namely, investigating the type of growth, questioning given course models, and determining exponential factors at different times, we show how the presented theoretical aspects manifest themselves in teaching examples when students are given the task of reflecting critically on existing media reports. Finally, the value of the three topics regarding the intended goals is discussed and conclusions concerning the possibilities and limits of their use in schools are drawn.

Providing adaptive, independence-preserving and theory-guided support to students in dealing with real-world problems in mathematics lessons is a major challenge for teachers in their professional practice. This paper examines this challenge in the context of simulations and mathematical modelling with digital tools: in addition to mathematical difficulties when autonomously working out individual solutions, students may also experience challenges when using digital tools. These challenges need to be closely examined and diagnosed, and might – if necessary – have to be overcome by intervention in such a way that the students can subsequently continue working independently. Thus, if a difficulty arises in the working process, two knowledge dimensions are necessary in order to provide adapted support to students. For teaching simulations and mathematical modelling with digital tools, more specifically, these knowledge dimensions are: pedagogical content knowledge about simulation and modelling processes supported by digital tools (this includes knowledge about phases and difficulties in the working process) and pedagogical content knowledge about interventions during the mentioned processes (focussing on characteristics of suitable interventions as well as their implementation and effects on the students’ working process). The two knowledge dimensions represent cognitive dispositions as the basis for the conceptualisation and operationalisation of a so-called adaptive intervention competence for teaching simulations and mathematical modelling with digital tools. In our article, we present a domain-specific process model and distinguish different types of teacher interventions. Then we describe the design and content of a university course at two German universities aiming to promote this domain-specific professional adaptive intervention competence, among others. In a study using a quasi-experimental pre-post design (N = 146), we confirm that the structure of cognitive dispositions of adaptive intervention competence for teaching simulations and mathematical modelling with digital tools can be described empirically by a two-dimensional model. In addition, the effectiveness of the course is examined and confirmed quantitatively. Finally, the results are discussed, especially against the background of the sample and the research design, and conclusions are derived for possibilities of promoting professional adaptive intervention competence in university courses.

Nowadays, science, technology, engineering, and mathematics (STEM) play a critical role in a nation’s global competitiveness and prosperity. Thus, there is a need to educate students in these subjects to meet the current and future demands of personal life and society. While applications, especially in science, engineering, and technology, are directly obvious, mathematics underpins the other STEM disciplines. It is recognized that mathematics is the foundation for all other STEM disciplines; the role of mathematics in classrooms is not clear yet. Therefore, the question arises: What is the current role of mathematics in secondary STEM classrooms? To answer this question, we conducted a systematic literature review based on three publication databases (Web of Science, ERIC, and EBSCO Teacher Referral Center). This literature review paper is intended to contribute to the current state of the role of mathematics in STEM education in secondary classrooms. Through the search, starting with 1910 documents, only 14 eligible documents were found. In these, mathematics is often seen as a minor matter and a means to an end in the eyes of science educators. From this, we conclude that the role of mathematics in the STEM classroom should be further strengthened. Overall, the paper highlights a major research gap, and proposes possible initial solutions to close it.

The article deals with the pedagogical content knowledge of mathematical modelling as part of the professional competence of pre-service teachers. With the help of a test developed for this purpose from a conceptual model, we examine whether this pedagogical content knowledge can be promoted in its different facets—especially knowledge about modelling tasks and about interventions—by suitable university seminars. For this purpose, the test was administered to three groups in a seminar for the teaching of mathematical modelling: (1) to those respondents who created their own modelling tasks for use with students, (2) to those trained to intervene in mathematical modelling processes, and (3) participating students who are not required to address mathematical modelling. The findings of the study—based on variance analysis—indicate that certain facets (knowledge of modelling tasks, modelling processes, and interventions) have increased significantly in both experimental groups but to varying degrees. By contrast, pre-service teachers in the control group demonstrated no significant change to their level of pedagogical content knowledge.

A basic mental model (BMM—in German ‘Grundvorstellung’) of a mathematical concept is a content-related interpretation that gives meaning to this concept. This paper defines normative and individual BMMs and concretizes them using the integral as an example. Four BMMs are developed about the concept of definite integral, sometimes used in specific teaching approaches: the BMMs of area, reconstruction, average, and accumulation. Based on theoretical work, in this paper we ask how these BMMs could be identified empirically. A test instrument was developed, piloted, validated and applied with 428 students in first-year mathematics courses. The test results show that the four normative BMMs of the integral can be detected and separated empirically. Moreover, the results allow a comparison of the existing individual BMMs and the requested normative BMMs. Consequences for future developments are discussed.