Refine
Has Fulltext
- yes (36)
Is part of the Bibliography
- yes (36)
Year of publication
Document Type
- Journal article (32)
- Book article / Book chapter (2)
- Review (2)
Keywords
Background
Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed.
Methodology/Principal
Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB.
Conclusions
Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators.
Actinomycetes are prolific producers of pharmacologically important compounds accounting for about 70% of the naturally derived antibiotics that are currently in clinical use. In this study, we report on the isolation of Streptomyces sp. strains from Mediterranean sponges, on their secondary metabolite production and on their screening for anti-infective activities. Bioassay-guided isolation and purification yielded three previously known compounds namely, cyclic depsipeptide valinomycin, indolocarbazole alkaloid staurosporine and butenolide. This is the first report of the isolation of valinomycin from a marine source. These compounds exhibited novel anti-parasitic activities specifically against Leishmania major (valinomycin IC50 < 0.11 μM; staurosporine IC50 5.30 μM) and Trypanosoma brucei brucei (valinomycin IC50 0.0032 μM; staurosporine IC50 0.022 μM; butenolide IC50 31.77 μM). These results underscore the potential of marine actinomycetes to produce bioactive compounds as well as the re-evaluation of previously known compounds for novel anti-infective activities.
We have previously shown that during an infection with Leishmania major, susceptible BALB/c mice, as opposed to mice of a resistant strain (C57BLl6), are primed by lipopolysaccharide for the production of high levels of tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)) which is known to be a potent maerophage M\(\Phi\) stimulator in other parasitic diseases. In the present study we investigated whether TNF-\(\alpha\) activates M\(\Phi\) for killing of L. major parasites. In the absence of interferon-y (IFN-\(\gamma\)) or lipopolysaccharide, TNF-\(\alpha\) (0.025-25000 U/ml) failed to activate peritoneal exudate M\(\Phi\) from BALB/c mice for killling of L. major amastigotes. In the presence of suboptimal doses of IFN-\(\gamma\) (5 or 10 Vlml), however, TNF-\(\alpha\) mediated a rapid elimination of intracellular parasites, which was highly significant compared to IFN-\(\gamma\) alone. Tbe combination of TNF with interleukin 4, in contrast, was inactive in this respect and allowed survival of intracellular parasites. From these data we conelude that the presence of IFN-\(\gamma\) is crucial for TNF-\(\alpha\)-mediated killing of L. major parasites by M\(\Phi\). Disease progression in susceptible mice therefore seems to be a consequence of a deficiency of IFN-\(\gamma\) and a predominance of interleukin 4 rather than the result of an excess amount of TNF-\(\alpha\).
In this study we report that cloned Thy-l +, L3T4-, Lyt-l-, Lyt-2+, H-Y-specific and H-2Db-restricted cytotoxic T ce11 lines (CTLL) when indueed by lectin or antigen secrete a soluble mediator(s) (SF) that inhibits proliferation and generation of cytotoxic lymphocytes (CTL) in mixed lymphocyte cultures (MLC). The biological activity was separable by gel filtration and appeared as a broad peak in the moleeular mass range between 10000 and 50000 kDa. It was found that the suppressive activity released by CTLL neither strictly correlates with their cytotoxic potential nor with their ability to produce immune interferon or Iymphotoxin. SF was shown to elicitits activity in an antigen-nonspeeific manner in that it suppressed the maturation of T lymphocytes responding to both, the appropriate H-Y antigen as weH as to unrelated H_2d alloantigens or to the hapten 2,4,6-trinitrophenyl (TNP). The effect of SF on CTL responses was most pronounced in early phases of primary or secondary MLC. When analyzed for its inhibitory activity on precursor ceHs in populations selected for either Lyt-2- or L3T4- lymphocytes, it was found that SF interfered with the maturation of both subsets. The inhibition of CTL responses elicited by SF could not be reversed by the addition of exogenous interleukin 2. The findtng that SF also inhi. bited the proliferation of some but not a11 antigen-dependent cloned T ceHs with helper or eytc'toxic potential provides evidence that the faetor also may regulate effector lymphl)cytes. In addition, the results support the assumption that SF exerts its effect direetly on the responder rather than the stimulator population, and demonstrate that the development of CTL from their preeursor eeHs is contro11ed at least in part by the eytotoxic effeetor cells themselves via a soluble factor(s) that interferes with distinct stages of T ce11 maturation. These findings again emphasize the expression of multiple functions by CTL and indieate their possible role du ring the course of an immune response by their capability to eliminate target cells and to secrete a soluble product(s) that mediates feedback contro!.
A novel technique for independent and simultaneous labeling of two antigens expressed on individual cells (referred to as mixed labeling) is presented. The staining procedure combined three-step (streptavidin-biotin) immunogold-silver staining with three-step immunoenzymatic labeling. To ensure both high specificity and high sensitivity, particular emphasis was placed on designing a protocol that avoids immunological crossreactivity between the antibody reagents and overlapping of the final color products. Two examples for usage of this mixed labeling technique are described: lymphocyte subpopulations were identified in inflammatory lesions of human skin and infected host cells were characterized in the skin of mice infected with the obligatory intracellular parasite Leishmania major, a cause of human cutaneous leishmaniasis.
Syngeneic memory cells can be stimulated to yield a secondary immune response after their transfer into irradiated euthymie recipients as well as into young thymusless nude mice. It is shown that nude mice older than twelve weeks of age are not permissive towards memory cell activation as it is found in non-irradiated euthymie animals. This barrier to isogeneie or congeneic cells seems to be caused by a pool of cyclophosphamide-sensitive cells. Since young nude mice could be rendered as unpermissive as older nude mice by pretreatment with either PNA-agglutinable thymus cells or nylon-wool passed spleen cells, it is suggested that an increased number of precursor T cells in older nude mice might induce this effect. Further experiments with monoclonal antibodies against the Lyt-l, Lyt-2, and L3T4 marker on T cells indicate that T -helper/inducer activity might be required to establish the "isogeneie barrief" in nude mice.
Freshly isolated human T lymphocytes were tested for their response to mycobacteria, mycobacteriallysates, 2 dimensional (2D) PAGE separated mycobacteriallysates, leishmania and defined leishmanial antigen preparations. While,o T cells proliferated vigourously in the presence of mycobacteria and mycobacteria derived lysates, a significant stimulation from 2 D gel separated lysates was not detected. In addition '10 T cells failed to respond towards leishmania or leishmanial components. In the ab T cell compartment some donors, presumably according to their state of immunity against mycobacteria, responded to mycobacteria, mycobacterial lysates and 2 D gel separated mycobacterial lysates. Neither freshly isolated '10 T cells nor ab T cells from naive donors did mount a significant immune response against leishmania.
Murine epidermal Langerhans cells (LC) have been demonstrated to stimulate a vigorous T cell response to Leishmania major, a cause of human cutaneous leishmaniasis. It was therefore of interest to analyze whether LC can take up viable parasites. Epidermal cells were obtained from mouse ear skin for incubation with L. major and subsequent detection of intracellular parasites by cytochemistry. Freshly isolated LC, but not cultured LC, phagocytosed L. major and the uptake was inhibited by antibodies to the complement receptor type 3. Electron microscopic studies revealed the presence of viable amastigotes within Le. Moreover, with double-Iabeling techniques, L. major-containing LC could also be detected in infected skin. The results demonstrate that LC can internalize L. major. Since the number of organisms per infected LC remained consistently low, the prime task of LC may not be the promotion of parasite spreading but the presentation of L. major antigen to T cells and, thus, the regulation of the cellular immunity during cutaneous leishmaniasis.