Refine
Has Fulltext
- yes (8)
Is part of the Bibliography
- yes (8)
Document Type
- Journal article (7)
- Doctoral Thesis (1)
Keywords
- DNA damage (2)
- apoptosis (2)
- micronuclei (2)
- Alzheimers disease (1)
- Angewandte Toxikologie (1)
- Gentoxizität (1)
- HeLa cells (1)
- Jolly bodies (1)
- Medizin (1)
- Mobiles Endgerät (1)
Ziel der vorliegenden Arbeit war es, zu untersuchen, ob nichtionisierende elektromagnetische Strahlung verschiedener Frequenzbereiche Genomschaden hervorrufen kann. Im Rahmen der vorliegenden Arbeit wurde eine Biomonitoring-Studie zu dieser Thematik konzipiert und durchgeführt. Es wurden 131 Probanden detailliert zu ihrer Mobilfunknutzung befragt. Anschließend wurden Mundschleimhautzellen entnommen und für eine mikroskopische Untersuchung aufbereitet und angefärbt. In den Zellen wurden Mikrokerne und andere Kernanomalien quantifiziert. Es zeigte sich keine Erhöhung der Mikrokernfrequenz in Abhängigkeit von der Dauer der Mobiltelefonnutzung. Auch die anderen abgefragten Parameter hatten keinen Einfluss auf die Höhe des Genomschadens. Als Positivkontrollen wurden vier Patienten, die eine lokale Strahlentherapie (ionisierende Strahlung) erhielten, eingeschlossen. Hier zeigte sich eine deutliche Erhöhung der Mikrokernfrequenz. Um festzustellen, ob die Mikrokerninduktion erst bei höheren Leistungsflussdichten als denen, die beim Mobilfunk verwendet werden, auftritt, wurden in-vitro-Versuche durchgeführt, bei denen verschiedene Zelllinien einer Strahlung von 900 MHz ausgesetzt wurden. Nach Exposition und einer Postinkubationsperiode wurden die Zellen fixiert und die Mikrokernfrequenz bestimmt. Neben den Leistungen wurden hier auch die Expositionszeiten und die Postinkubationsperioden variiert. In keinem Fall konnte eine Erhöhung der Mikrokernfrequenz festgestellt werden. Insgesamt konnte ein Einfluss elektromagnetischer Strahlung auf das Genom weder am Menschen im Rahmen einer Biomonitoring-Studie noch an verschiedenen Zelllinien im Rahmen von in-vitro-Versuchen festgestellt werden. Terahertzstrahlung ist elektromagnetische Strahlung im Bereich von 0,1 bis 10 THz, d. h. sie liegt zwischen Mikrowellen und Infrarotlicht. Derzeit wird sie hauptsächlich für spektroskopische Untersuchungen und zur Qualitätskontrolle im Herstellungs-prozess verschiedener Produkte verwendet. Anwendungen in der Sicherheitstechnik (z. B. Ganzkörperscanner) und in der Medizintechnik (z. B. Bildgebung) stehen kurz vor der Markteinführung bzw. sind bereits etabliert. Diese Anwendungen bringen eine Exposition der betroffenen Menschen mit sich. Außerdem wird an weiteren Techniken wie etwa der Datenübertragung gearbeitet. Die Wirkungen auf biologische Systeme sind im Gegensatz zum Mobilfunkbereich bisher nur unzureichend untersucht. Da bisher keine vollständigen Literaturübersichten vorlagen, wurde eine umfassende Literaturrecherche durchgeführt. Ziel war es, alle bisher durchgeführten Studien zu diesem Thema aufzulisten. Um diese Datenbasis zu verbreitern wurden in-vitro-Versuche bei verschiedenen Frequenzen durchgeführt. Als Strahlungsquellen wurden eine Frequenzvervielfacherkaskade (0,106 THz), ein Rückwärtswellen-Oszillator (0,380 THz) und ein Ferninfrarot-Laser (2,520 THz) eingesetzt. Die Strahlung wurde in einen modifizierten Inkubator geführt, so dass die Expositionen bei definierter Temperatur und konstantem CO2-Gehalt durchgeführt werden konnten. Da Terahertzstrahlung durch Wasser sehr stark absorbiert wird, sind bei einer Exposition des Menschen primär die obersten Hautschichten betroffen. Aus diesem Grund wurden primäre Hautfibroblasten und HaCaT-Zellen, eine Keratinozyten-Zelllinie, als biologische Systeme verwendet. Die Zellen wurden für unterschiedliche Zeitperioden mit verschiedenen Leistungsflussdichten exponiert. Anschließend wurden die Zellen für den Comet Assay aufbereitet und analysiert. Der Comet Assay ist eine Methode zur Quantifizierung von Einzel- und Doppelstrangbrüchen der DNA. Weiterhin wurden die Zellen nach einer Postinkubationsperiode für den Mikrokerntest aufbereitet. Neben unbehandelten Kontrollen und Sham-Expositionen wurden auch Positivkontrollen durchgeführt. Es konnte keine Erhöhung der Anzahl der DNA-Strangbrüche bzw. der Mikrokernfrequenz festgestellt werden. Da bekannt war, dass im Mobilfunkbereich unter bestimmten Bedingungen Störungen der Mitose, nicht aber Erhöhungen der Mikrokernfrequenz, auftreten, wurden Mitosestörungen nach Exposition bei 0,106 THz untersucht. Hierzu wurden AL-Zellen für 30 Minuten exponiert und anschließend ohne Postinkubation direkt fixiert. Analysiert wurden Störungen in allen Phasen der Mitose. Es zeigte sich, dass die Frequenz der Störungen in der Pro- und Metaphase unverändert blieb. Die Störungen in der Ana- und Telophase nahmen dagegen mit steigender Leistungsflussdichte zu. Insgesamt konnte im Terahertzbereich unter den gewählten Expositionsbedingungen kein DNA-Schaden beobachtet werden. Bei 0,106 THz konnten Mitosestörungen als Folge der Exposition gezeigt werden. Der Zusammenhang zwischen diesen Mitosestörungen und DNA-Schäden, insbesondere der Mikrokerninduktion, konnte bisher nicht abschließend geklärt werden und bleibt Gegenstand weiterer Untersuchungen.
Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.
The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G0/G1 phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.
Eugenol is a phytochemical present in different plant products, e.g., clove oil. Traditionally, it is used against a number of different disorders and it was suggested to have anticancer activity. In this study, the activity of eugenol was evaluated in a human cervical cancer (HeLa) cell line and cell proliferation was examined after treatment with various concentrations of eugenol and different treatment durations. Cytotoxicity was tested using lactate dehydrogenase (LDH) enzyme leakage. In order to assess eugenol’s potential to act synergistically with chemotherapy and radiotherapy, cell survival was calculated after eugenol treatment in combination with cisplatin and X-rays. To elucidate its mechanism of action, caspase-3 activity was analyzed and the expression of various genes and proteins was checked by RT-PCR and western blot analyses. Eugenol clearly decreased the proliferation rate and increased LDH release in a concentration- and time-dependent manner. It showed synergistic effects with cisplatin and X-rays. Eugenol increased caspase-3 activity and the expression of Bax, cytochrome c (Cyt-c), caspase-3, and caspase-9 and decreased the expression of B-cell lymphoma (Bcl)-2, cyclooxygenase-2 (Cox-2), and interleukin-1 beta (IL-1β) indicating that eugenol mainly induced cell death by apoptosis. In conclusion, eugenol showed antiproliferative and cytotoxic effects via apoptosis and also synergism with cisplatin and ionizing radiation in the human cervical cancer cell line.
Neurodegenerative diseases show an increase in prevalence and incidence, with the most prominent example being Alzheimer's disease. DNA damage has been suggested to play a role in the pathogenesis, but the exact mechanisms remain elusive. We enrolled 425 participants with and without neurodegenerative diseases and analyzed DNA damage in the form of micronuclei in buccal mucosa samples. In addition, other parameters such as binucleated cells, karyolytic cells, and karyorrhectic cells were quantified. No relevant differences in DNA damage and cytotoxicity markers were observed in patients compared to healthy participants. Furthermore, other parameters such as lifestyle factors and diseases were also investigated. Overall, this study could not identify a direct link between changes in buccal cells and neurogenerative diseases, but highlights the influence of lifestyle factors and diseases on the human buccal cytome.
Long-term fate of etoposide-induced micronuclei and micronucleated cells in Hela-H2B-GFP cells
(2020)
Micronuclei are small nuclear cellular structures containing whole chromosomes or chromosomal fragments. While there is a lot of information available about the origin and formation of micronuclei, less is known about the fate of micronuclei and micronucleated cells. Possible fates include extrusion, degradation, reincorporation and persistence. Live cell imaging was performed to quantitatively analyse the fates of micronuclei and micronucleated cells occurring in vitro. Imaging was conducted for up to 96 h in HeLa-H2B-GFP cells treated with 0.5, 1 and 2 µg/ml etoposide. While a minority of micronuclei was reincorporated into the main nucleus during mitosis, the majority of micronuclei persisted without any alterations. Degradation and extrusion were observed rarely or never. The presence of micronuclei affected the proliferation of the daughter cells and also had an influence on cell death rates. Mitotic errors were found to be clearly increased in micronucleus-containing cells. The results show that micronuclei and micronucleated cells can, although delayed in cell cycle, sustain for multiple divisions.
For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.
The spleen selectively removes cells with intracellular inclusions, for example, detached nuclear fragments in circulating erythrocytes, called Howell–Jolly Bodies (HJBs). With absent or deficient splenic function HJBs appear in the peripheral blood and can be used as a simple and non-invasive risk-indicator for fulminant potentially life-threatening infection after spleenectomy. However, it is still under debate whether counting of the rare HJBs is a reliable measure of splenic function. Investigating HJBs in premature erythrocytes from patients during radioiodine therapy gives about 10 thousand times higher HJB counts than in blood smears. However, we show that there is still the risk of false-positive results by unspecific nuclear remnants in the prepared samples that do not originate from HJBs, but from cell debris residing above or below the cell. Therefore, we present a method to improve accuracy of image-based tests that can be performed even in non-specialized medical institutions. We show how to selectively label HJB-like clusters in human blood samples and how to only count those that are undoubtedly inside the cell. We found a “critical distance” dcrit referring to a relative HJB-Cell distance that true HJBs do not exceed. To rule out false-positive counts we present a simple inside-outside-rule based on dcrit—a robust threshold that can be easily assessed by combining conventional 2D imaging and straight-forward image analysis. Besides data based on fluorescence imaging, simulations of randomly distributed HJB-like objects on realistically modelled cell objects demonstrate the risk and impact of biased counting in conventional analysis. © 2017 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.