Refine
Has Fulltext
- yes (13)
Is part of the Bibliography
- yes (13)
Document Type
- Journal article (13)
Language
- English (13)
Keywords
- MRI (3)
- data acquisition (2)
- magnetic resonance imaging (2)
- rotator cuff (2)
- shoulder surgery (2)
- 1H-Magnetic resonance spectroscopy (1H-MRS) (1)
- 3 T (1)
- Cystic fibrosis (1)
- Dixon (1)
- Exercise capacity (1)
Institute
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (12)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (3)
- Kinderklinik und Poliklinik (2)
- Klinik und Poliklinik für Strahlentherapie (2)
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II) (2)
- Medizinische Klinik und Poliklinik I (2)
- Klinik und Poliklinik für Nuklearmedizin (1)
Background
The effect of smoking on coronary vasomotion has been investigated in the past with various imaging techniques in both short- and long-term smokers. Additionally, coronary vasomotion has been shown to be normalized in long-term smokers by L-Arginine acting as a substrate for NO synthase, revealing the coronary endothelium as the major site of abnormal vasomotor response. Aim of the prospective cohort study was to investigate coronary vasomotion of young healthy short-term smokers via magnetic resonance cold pressor test with and without the administration of L-Arginine and compare obtained results with the ones from nonsmokers.
Methods
Myocardial blood flow (MBF) was quantified with first-pass perfusion MRI on a 1.5 T scanner in healthy short-term smokers (N = 10, age: 25.0 ± 2.8 years, 5.0 ± 2.9 pack years) and nonsmokers (N = 10, age: 34.3 ± 13.6) both at rest and during cold pressor test (CPT). Smokers underwent an additional examination after administration of L-Arginine within a median of 7 days of the naïve examination.
Results
MBF at rest turned out to be 0.77 ± 0.30 (smokers with no L-Arginine; mean ± standard deviation), 0.66 ± 0.21 (smokers L-Arginine) and 0.84 ± 0.08 (nonsmokers). Values under CPT were 1.21 ± 0.42 (smokers no L-Arginine), 1.09 ± 0.35 (smokers L-Arginine) and 1.63 ± 0.33 (nonsmokers). In all groups, MBF was significantly increased under CPT compared to the corresponding rest examination (p < 0.05 in all cases). Additionally, MBF under CPT was significantly different between the smokers and the nonsmokers (p = 0.002). MBF at rest was significantly different between the smokers when L-Arginine was given and the nonsmokers (p = 0.035).
Conclusion
Short-term smokers showed a reduced response to cold both with and without the administration of L-Arginine. However, absolute MBF values under CPT were lower compared to nonsmokers independently of L-Arginine administration.
Purpose:
The gradient system transfer function (GSTF) characterizes the frequency transfer behavior of a dynamic gradient system and can be used to correct non‐Cartesian k‐space trajectories. This study analyzes the impact of the gradient coil temperature of a 3T scanner on the GSTF.
Methods:
GSTF self‐ and B\(_0\)‐cross‐terms were acquired for a 3T Siemens scanner (Siemens Healthcare, Erlangen, Germany) using a phantom‐based measurement technique. The GSTF terms were measured for various temperature states up to 45°C. The gradient coil temperatures were measured continuously utilizing 12 temperature sensors which are integrated by the vendor. Different modeling approaches were applied and compared.
Results:
The self‐terms depend linearly on temperature, whereas the B0‐cross‐term does not. Effects induced by thermal variation are negligible for the phase response. The self‐terms are best represented by a linear model including the three gradient coil sensors that showed the maximum temperature dependence for the three axes. The use of time derivatives of the temperature did not lead to an improvement of the model. The B\(_0\)‐cross‐terms can be modeled by a convolution model which considers coil‐specific heat transportation.
Conclusion:
The temperature dependency of the GSTF was analyzed for a 3T Siemens scanner. The self‐ and B0‐cross‐terms can be modeled using a linear and convolution modeling approach based on the three main temperature sensor elements.
Background
T1 mapping sequences such as MOLLI, ShMOLLI and SASHA make use of different technical approaches, bearing strengths and weaknesses. It is well known that obtained T1 relaxation times differ between the sequence techniques as well as between different hardware. Yet, T1 quantification is a promising tool for myocardial tissue characterization, disregarding the absence of established reference values. The purpose of this study was to evaluate the feasibility of native and post-contrast T1 mapping methods as well as ECV maps and its diagnostic benefits in a clinical environment when scanning patients with various cardiac diseases at 3 T.
Methods
Native and post-contrast T1 mapping data acquired on a 3 T full-body scanner using the three pulse sequences 5(3)3 MOLLI, ShMOLLI and SASHA in 19 patients with clinical indication for contrast enhanced MRI were compared. We analyzed global and segmental T1 relaxation times as well as respective extracellular volumes and compared the emerged differences between the used pulse sequences.
Results
T1 times acquired with MOLLI and ShMOLLI exhibited systematic T1 deviation compared to SASHA. Myocardial MOLLI T1 times were 19% lower and ShMOLLI T1 times 25% lower compared to SASHA. Native blood T1 times from MOLLI were 13% lower than SASHA, while post-contrast MOLLI T1-times were only 5% lower. ECV values exhibited comparably biased estimation with MOLLI and ShMOLLI compared to SASHA in good agreement with results reported in literature. Pathology-suspect segments were clearly differentiated from remote myocardium with all three sequences.
Conclusion
Myocardial T1 mapping yields systematically biased pre- and post-contrast T1 times depending on the applied pulse sequence. Additionally calculating ECV attenuates this bias, making MOLLI, ShMOLLI and SASHA better comparable. Therefore, myocardial T1 mapping is a powerful clinical tool for classification of soft tissue abnormalities in spite of the absence of established reference values.
Background
Skeletal muscle function dysfunction has been reported in patients with cystic fibrosis (CF). Studies so far showed inconclusive data whether reduced exercise capacity is related to intrinsic muscle dysfunction in CF.
Methods
Twenty patients with CF and 23 age-matched controls completed an incremental cardiopulmonary cycling test. Further, a Wingate anaerobic test to assess muscle power was performed. In addition, all participants completed an incremental knee-extension test with 31P magnetic resonance spectroscopy to assess muscle metabolism (inorganic phosphate (Pi) and phosphocreatinine (PCr) as well as intracellular pH). In the MRI, muscle cross-sectional area of the M. quadriceps (qCSA) was also measured. A subgroup of 15 participants (5 CF, 10 control) additionally completed a continuous high-intensity, high-frequency knee-extension exercise task during 31P magnetic resonance spectroscopy to assess muscle metabolism.
Results
Patients with CF showed a reduced exercise capacity in the incremental cardiopulmonary cycling test (VO2peak: CF 77.8 ± 16.2%predicted (36.5 ± 7.4 ml/qCSA/min), control 100.6 ± 18.8%predicted (49.1 ± 11.4 ml/qCSA/min); p < 0.001), and deficits in anaerobic capacity reflected by the Wingate test (peak power: CF 537 ± 180 W, control 727 ± 186 W; mean power: CF 378 ± 127 W, control 486 ± 126 W; power drop CF 12 ± 5 W, control 8 ± 4 W. all: p < 0.001). In the knee-extension task, patients with CF achieved a significantly lower workload (p < 0.05). However, in a linear model analysing maximal work load of the incremental knee-extension task and results of the Wingate test, respectively, only muscle size and height, but not disease status (CF or not) contributed to explaining variance. In line with this finding, no differences were found in muscle metabolism reflected by intracellular pH and the ratio of Pi/PCr at submaximal stages and peak exercise measured through MRI spectroscopy.
Conclusions
The lower absolute muscle power in patients with CF compared to controls is exclusively explained by the reduced muscle size in this study. No evidence was found for an intrinsic skeletal muscle dysfunction due to primary alterations of muscle metabolism.
Functional magnetic resonance imaging (fMRI) has become a powerful and influential method to non-invasively study neuronal brain activity. For this purpose, the blood oxygenation level-dependent (BOLD) effect is most widely used. T2* weighted echo planar imaging (EPI) is BOLD sensitive and the prevailing fMRI acquisition technique. Here, we present an alternative to its standard Cartesian recordings, i.e. k-space density weighted EPI, which is expected to increase the signal-to-noise ratio in fMRI data. Based on in vitro and in vivo pilot measurements, we show that fMRI by k-space density weighted EPI is feasible and that this new acquisition technique in fact boosted spatial and temporal SNR as well as the detection of local fMRI activations. Spatial resolution, spatial response function and echo time were identical for density weighted and conventional Cartesian EPI. The signal-to-noise ratio gain of density weighting can improve activation detection and has the potential to further increase the sensitivity of fMRI investigations.
Background:
Fatty Degeneration (FD) of the rotator cuff muscles influences functional and anatomical outcome after rotator cuff repair. The MRI based estimation of fatty degeneration is the gold standard. There is some evidence that Ultrasound elastography (EUS) can detect local differences of tissue stiffness in muscles and tendons. Shear-wave elastography (SWE) was evaluated to determine the extent to which shear wave velocity was associated with measures of fatty degeneration. MRI-spectroscopic fat measurement was used as a reference to quantify the amount of fat in the muscle belly.
Methods:
Forty-two patients underwent SWE of the supraspinatus muscles at its thickest diameter. After ultrasound evaluation an MRI-spectroscopic fat measurement of the supraspinatus muscle was performed using the SPLASH-technique. A gel filled capsule was used to locate the measured area in the MRI. The values of shear wave velocity (SWV) measured with SWE and spectroscopic fat measurement were correlated statistically using Pearson’s correlation test.
Results:
Correlation of the fat amount measured with MRI-spectroscopy and the SWV measured with SWE was ρ =0.82. Spectroscopic measured fat ratio of the supraspinatus muscle ranged from 0% to 77.41% and SWV from 1.59 m/s to 5.32 m/s. In 4 patients no sufficient SWE could be performed, these individuals showed a larger diameter of the overlying soft tissue. SWV measured with SWE showed a good correlation with MRI spectroscopic fat amount of the supraspinatus muscle.
Conclusion:
These preliminary data suggest that SWE may be a sufficient tool in detecting and estimating the amount of fatty degeneration in the supraspinatus muscle in real time. Large overlying soft tissue may be a limitation in performing sufficient EUS.
One of the main shortcomings of interventional electrophysiology (EP) is its inability to generate sufficient soft tissue contrast for intra-procedural visualization of the myocardium and the surrounding tissue, using conventional imaging techniques. Interventional cardiovascular magnetic resonance imaging (MRI) aims at bringing about significant improvements to the complex and decisive EP interventions far beyond the capabilities of currently available supportive imaging techniques used to surmount the drawbacks of fluoroscopy, as MRI not only allows of precise three-dimensional exposure of the cardiovascular morphology, but also proves to be a promising technique exclusively suitable for direct visualization of arrhythmogenic substrate and therapeutic effects. The major challenge posed by clinical …
Mapping the longitudinal relaxation time \(T_1\) has widespread applications in clinical MRI as it promises a quantitative comparison of tissue properties across subjects and scanners. Due to the long scan times of conventional methods, however, the use of quantitative MRI in clinical routine is still very limited. In this work, an acceleration of Inversion-Recovery Look-Locker (IR-LL) \(T_1\) mapping is presented. A model-based algorithm is used to iteratively enforce an exponential relaxation model to a highly undersampled radially acquired IR-LL dataset obtained after the application of a single global inversion pulse. Using the proposed technique, a \(T_1\) map of a single slice with 1.6mm in-plane resolution and 4mm slice thickness can be reconstructed from data acquired in only 6s. A time-consuming segmented IR experiment was used as gold standard for \(T_1\) mapping in this work. In the subsequent validation study, the model-based reconstruction of a single-inversion IR-LL dataset exhibited a \(T_1\) difference of less than 2.6% compared to the segmented IR-LL reference in a phantom consisting of vials with \(T_1\) values between 200ms and 3000ms. In vivo, the \(T_1\) difference was smaller than 5.5% in WM and GM of seven healthy volunteers. Additionally, the \(T_1\) values are comparable to standard literature values. Despite the high acceleration, all model-based reconstructions were of a visual quality comparable to fully sampled references. Finally, the reproducibility of the \(T_1\) mapping method was demonstrated in repeated acquisitions. In conclusion, the presented approach represents a promising way for fast and accurate \(T_1\) mapping using radial IR-LL acquisitions without the need of any segmentation.
The aim of this study was to explore the applicability of fast MR techniques to routine paediatric abdominopelvic MRI at 1.5 Tesla. "Controlled Aliasing in Parallel Imaging Results in Higher Acceleration-" (CAIPIRINHA-) accelerated contrast-enhanced-T1w 3D FLASH imaging was compared to standard T1w 2D FLASH imaging with breath-holding in 40 paediatric patients and to respiratory-triggered T1w TSE imaging in 10 sedated young children. In 20 nonsedated patients, we compared T2w TIRM to fat-saturated T2w HASTE imaging. Two observers performed an independent and blinded assessment of overall image quality. Acquisition time was reduced by the factor of 15 with CAIPIRINHA-accelerated T1w FLASH and by 7 with T2w HASTE. With CAIPIRINHA and with HASTE, there were significantly less motion artefacts in nonsedated patients. In sedated patients, respiratory-triggered T1w imaging in general showed better image quality. However, satisfactory image quality was achieved with CAIPIRINHA in two sedated patients where respiratory triggering failed. In summary, fast scanning with CAIPIRINHA and HASTE presents a reliable high quality alternative to standard sequences in paediatric abdominal MRI. Paediatric patients, in particular, benefit greatly from fast image acquisition with less breath-hold cycles or shorter sedation.
Background: MRI has become the mainstay of diagnostic imaging in paediatric rheumatology for lesion detection, differential diagnosis and therapy surveillance. MR imaging of synovitis, in particular, is indispensable for early diagnosis and follow-up in arthritis patients. We used diffusion-weighted MRI (DWI) as a new imaging modality in comparison to standard MRI sequences to study bone marrow oedema, soft-tissue oedema and synovitis in paediatric patients. Methods: A total of 52 patients (mean age 11 ± 5 years) with bone marrow oedema (n = 31), soft-tissue oedema (n = 20) and synovitis (n = 15) were examined with transversal diffusion-weighted single-shot echoplanar imaging in addition to standard MR sequences (T2W TIRM, T1W pre- and post-contrast). Diffusion-weighted images were used for lesion detection and apparent diffusion coefficient (ADC, unit × 10-3 mm2/s) values were measured with ROI technique on ADC maps. Results: In 50 of 52 patients, DWI delineated the lesion of interest corresponding to pathological signal increase on standard sequences. Mean ADC was 1.60 ± 0.14 (range 1.38 - 1.99) in osseous lesions, 1.72 ± 0.31 (range 1.43 - 2.56) in soft tissue oedema and 2.82 ± 0.24 (range 2.47 - 3.18) for joint effusion (ANOVA p<0.001). No significant difference in mean ADC was seen for inflammatory vs. non-inflammatory lesions. Relative signal intensity of oedema was similar for DWI and T2W TIRM. DWI visualised synovial restricted diffusion with a mean ADC of 2.12 ± 0.45 in 12 of 15 patients with synovitis. Conclusions: Diffusion-weighted MRI reliably visualises osseous and soft tissue oedema, as compared to standard sequences. DWI of synovitis is feasible in large joints and presents a novel approach to contrast-free imaging of synovitis. Whole-body DWI for chronic non-bacterial osteomyelitis should be evaluated in future studies.