Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2018 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Feldeffekttransistor (1)
- Field effect transistor (1)
- Halbleiter (1)
- Kohlenstoff-Nanoröhre (1)
- Optische Spektroskopie (1)
- Polymere (1)
- optical spectroscopy (1)
- polymer (1)
- semiconductor devices (1)
- single-wall carbon nanotubes (1)
Institute
In order to shrink the size of semiconductor devices and improve their
efficiency at the same time, silicon-based semiconductor devices have
been engineered, until the material almost reaches its performance
limits. As the candidate to be used next in semiconducting devices,
single-wall carbon nanotubes show a great potential due to their
promise of increased device efficiency and their high charge carrier
mobilities in the nanometer size active areas. However, there are
material based problems to overcome in order to imply SWNTs in the
semiconductor devices. SWNTs tend to aggregate in bundles and it is
not trivial to obtain an electronically or chirally homogeneous SWNT
dispersion and when it is done, a homogeneous thin film needs to be
produced with a technique that is practical, easy and scalable. This
work was aimed to solve both of these problems.
In the first part of this study, six different polymers, containing
fluorene or carbazole as the rigid part and bipyridine, bithiophene or
biphenyl as the accompanying copolymer unit, were used to selectively
disperse semiconducting SWNTs. With the data obtained from
absorption and photoluminescence spectroscopy of the corresponding
dispersions, it was found out that the rigid part of the copolymer plays a
primary role in determining its dispersion efficiency and electronic
sorting ability. Within the two tested units, carbazole has a higher π
electron density. Due to increased π−π interactions, carbazole
containing copolymers have higher dispersion efficiency. However, the
electronic sorting ability of fluorene containing polymers is superior.
Chiral selection of the polymers in the dispersion is not directly
foreseeable from the selection of backbone units. At the end, obtaining a monochiral dispersion is found to be highly dependent on the used raw
material in combination to the preferred polymer.
Next, one of the best performing polymers due to high chirality
enrichment and electronic sorting ability was chosen in order to
disperse SWNTs. Thin films of varying thickness between 18 ± 5 to
755o±o5 nm were prepared using vacuum filtration wet transfer method
in order to analyze them optically and electronically.
The scalability and efficiency of the integrated thin film production
method were shown using optical, topographical and electronic
measurements. The relative photoluminescence quantum yield of the
radiative decay from the SWNT thin films was found to be constant for
the thickness scale. Constant roughness on the film surface and linearly
increasing concentration of SWNTs were also supporting the scalability
of this thin film production method. Electronic measurements on bottom
gate top contact transistors have shown an increasing charge carrier
mobility for linear and saturation regimes. This was caused by the
missing normalization of the mobility for the thickness of the active
layer. This emphasizes the importance of considering this dimension for
comparison of different field effect transistor mobilities.