Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Keywords
- Anandamid (1)
- Asthma (1)
- Axonal degeneration (1)
- Breathing (1)
- CB1 Rezeptor (1)
- CB1 receptor (1)
- Cannabinoide (1)
- Chronic obstrusive pulmonary disease (1)
- Diabetic polyneuropathy (1)
- Diagnostic medicine (1)
Institute
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Frauenklinik und Poliklinik (1)
- Institut für Organische Chemie (1)
- Institut für Pharmazie und Lebensmittelchemie (1)
- Institut für Psychologie (1)
- Lehrstuhl für Orthopädie (1)
- Medizinische Klinik (bis 2004) (1)
- Neurologische Klinik und Poliklinik (1)
EU-Project number / Contract (GA) number
- 259867 (1)
Major depressive disorder and the anxiety disorders are highly prevalent, disabling and moderately heritable. Depression and anxiety are also highly comorbid and have a strong genetic correlation (r(g) approximate to 1). Cognitive behavioural therapy is a leading evidence-based treatment but has variable outcomes. Currently, there are no strong predictors of outcome. Therapygenetics research aims to identify genetic predictors of prognosis following therapy. We performed genome-wide association meta-analyses of symptoms following cognitive behavioural therapy in adults with anxiety disorders (n = 972), adults with major depressive disorder (n = 832) and children with anxiety disorders (n = 920; meta-analysis n = 2724). We (h(SNP)(2)) and polygenic scoring was used to examine genetic associations between therapy outcomes and psychopathology, personality and estimated the variance in therapy outcomes that could be explained by common genetic variants learning. No single nucleotide polymorphisms were strongly associated with treatment outcomes. No significant estimate of h(SNP)(2) could be obtained, suggesting the heritability of therapy outcome is smaller than our analysis was powered to detect. Polygenic scoring failed to detect genetic overlap between therapy outcome and psychopathology, personality or learning. This study is the largest therapygenetics study to date. Results are consistent with previous, similarly powered genome-wide association studies of complex traits.
Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.
Cannabinoide zeigen komplexe kardiovaskuläre Effekte. Das endogene Cannabinoid Anandamid (Arachidonylethanolamid) induziert in verschiedenen Organsystemen eine hauptsächlich über periphere CB1-Rezeptoren vermittelte Vasodilatation. Der Einfluss von Cannabinoiden auf die pulmonale Strombahn ist jedoch unklar. Am Modell einer isolierten, perfundierten und ventilierten Kaninchenlunge konnte gezeigt werden, dass die endogenen Cannabinoide Anandamid und 2-Arachidonylglycerol (2-AG) dosisabhängig den pulmonalarteriellen Druck erhöhen. Cannabinoide, die abweichend zu Anandamid und 2-AG keine Arachidonsäurestruktur haben, z.B. das synthetische HU-210 oder das pflanzliche Δ9-THC, erhöhen den pulmonalarteriellen Druck nicht. Im Gegensatz zu Anandamid und 2-AG führen die stoffwechselstabilen, gegen enzymatischen Abbau geschützten Analoga von Anandamid und 2-AG, R-Methanandamid und Noladinäther, zu keinem Anstieg des pulmonalarteriellen Druckes. Blockade des CB1-Rezeptors durch den spezifischen Antagonisten AM-251 verhindert die pulmonalarterielle Druckerhöhung nach Anandamidgabe nicht. Wir folgern daraus, dass Abbauprodukte von Anandamid und 2-AG für die Druckerhöhung verantwortlich sind. Erstmalig konnten wir quantitativ Anandamid und 2-AG mittels Flüssigkeitschromatographie / Massenspektrometrie in der Kaninchenlunge nachweisen. Dies legt eine physiologische Relevanz der beiden Endocannabinoide bei der Tonus-Regulation des Lungenkreislaufes nahe.
Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy
(2015)
Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP.
Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.
Reproducibility and comparison of oxygen-enhanced T\(_1\) quantification in COPD and asthma patients
(2017)
T\(_1\) maps have been shown to yield useful diagnostic information on lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma, both for native T\(_1\) and ΔT\(_1\), the relative reduction while breathing pure oxygen. As parameter quantification is particularly interesting for longitudinal studies, the purpose of this work was both to examine the reproducibility of lung T\(_1\) mapping and to compare T\(_1\) found in COPD and asthma patients using IRSnapShotFLASH embedded in a full MRI protocol. 12 asthma and 12 COPD patients (site 1) and further 15 COPD patients (site 2) were examined on two consecutive days. In each patient, T\(_1\) maps were acquired in 8 single breath-hold slices, breathing first room air, then pure oxygen. Maps were partitioned into 12 regions each to calculate average values. In asthma patients, the average T\(_{1,RA}\) = 1206ms (room air) was reduced to T\(_{1,O2}\) = 1141ms under oxygen conditions (ΔT\(_1\) = 5.3%, p < 5⋅10\(^{−4})\), while in COPD patients both native T\(_{1,RA}\) = 1125ms was significantly shorter (p < 10\(^{−3})\) and the relative reduction to T\(_{1,O2}\) = 1081ms on average ΔT\(_1\) = 4.2%(p < 10\(^{−5}\)). On the second day, with T\(_{1,RA}\) = 1186ms in asthma and T\(_{1,RA}\) = 1097ms in COPD, observed values were slightly shorter on average in all patient groups. ΔT\(_1\) reduction was the least repeatable parameter and varied from day to day by up to 23% in individual asthma and 30% in COPD patients. While for both patient groups T\(_1\) was below the values reported for healthy subjects, the T\(_1\) and ΔT\(_1\) found in asthmatics lies between that of the COPD group and reported values for healthy subjects, suggesting a higher blood volume fraction and better ventilation. However, it could be demonstrated that lung T\(_1\) quantification is subject to notable inter-examination variability, which here can be attributed both to remaining contrast agent from the previous day and the increased dependency of lung T\(_1\) on perfusion and thus current lung state.