Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Journal article (7)
Language
- English (7)
Keywords
- Infektionsbiologie (4)
- Adhesion (1)
- Candida albicans (1)
- Escherichia coli (1)
- Fimbriae (1)
- Gene regulation (1)
- NRG1 (1)
- S fimbrial adhesin (Sfa) (1)
- Transcription (1)
- UME6 (1)
Institute
The sfa determinant codes for S fimbrial adhesins which constitute adherence factors of pathogenic Escherichia coli strains. Wehave recently shown that the sfa determinant is transcribed from three prömoters, pA, pB, and pC. In comparison with the promoters pB and pC, promoter pA, which is located in front of the structural gene sfaA, showed very weak activity. Herewe have determined the exact positions ofthe mRNA start points by primer extension studies. We have also shown that mRNAs of 500, 700 and 1400 bases can be detected using oligonucleotide probes specific for the genes sfaB, sfaC and sfaA. SfaB and SfaC arepositive regulators infiuencing fimbriation and the production of the S-specific adhesin which is encoded by the gene sfaS Iocated in the distal half of the determinant. In addition, it is demonstrated that SfaB and SfaC interfere with the regulatory effect of the histone-like protein H-NS, encoded by a locus termed drdX or osmZ. In a drdx+ strain the regulators are necessary for transcription of the sfa determinant. In contrast, sfa expression is activator-independent in a drdx- strain. In this latter genetic background, a substantial fraction of the sfa transcripts is initiated from promoter pA. On the basis of these data we discuss a model for the regulation of this adhesin-specific determinant.
The S fimbrial adhesin (sfa) determinant of E. co/i comprises nine genes situated on a stretch of 7.9 kilobases (kb) DNA. Here the nucleotide sequence of the genes sfa B and sfaC situated proximal to the main structural gene sfaA is described. Sfa-LacZ fusions show that the two genes are transcribed in opposite directions. The isolation of mutants in the proximal region of the sfa gene cluster, the construction of sfa-phoA gene fusions and subsequent transcomplementation sturlies indicated that the genes sfaB and sfaC play a role in regulation of the sfa determinant. ln addition the nucleotide sequence of the genes sfa D, sfa E and sfa F situated between the genes sfaA and sfaG responsible for S subunit proteins, were determined. lt is suggested that these genes are involved in transport and assembly of fimbrial subunits. Thus the entire genetic organization of the sfa determinant is presented and compared with the gene clusters coding for P fimbriae (pap), F1 C fimbriae (foc) and type I fimbriae ( fim). The evolutionary relationship of fimbrial adhesin determinants is discussed.
The S flmbrial adhesln (Sfa) enables Esch richla colito attach to slalfc acld-containing receptor molecules of eukaryotJc cells. As prevlously reported, the genetlc determinant coding for the Sfa of an E. co/1 06 strain was cloned, the gene codlng for the major fimbrfal subunit was ldentlfled and sequenced and th.e S speclflc adhesin was detected. Here we present evidence that ln addltlon to the major subunit proteln SfaA three other minor subunit proteins, SfaG (17 kD), SfaS (14kD) and SfaH (31 kD) can be isolated from the S..speclfic flmbrial adhesln complex. The genes coding for these minor subunits were ldenblied, mutagenlzed separately and sequenced. Using haemagglutlnatton tests. electron-microscopy and quantitative ELISA assays with monoclonal anti-SfaA and anti-SfaS antlbodles the functlons of the minor subunlts were determined. lt was determlned that SfaS ls ldentlcal to the S-specific adhesln; whlch also plays a role ln deterrninatlon of the degree of fimbri· ation ofthe cell. The mlnor subunit SfaH also had some Jnfluence on the Ievei of fimbrlation of the cell. while StaG ls necessary for full expression of S·specific binding. lt was further shown that the amino-terminal proteln sequence of the isolated SfaS profein was identJcal to the proteln sequence calculated from the DNA sequence of the sfaS gene locus.
The gene coding for the sialic acid-specific adhesin SfaS produced by the S fimbrial adhesin (sfa) determinant of Escherichia coli has been modified by oligonucleotide-directed, site-specific mutagenesis. Lysine 116, arginine 118, and Iysine 122 were replaced by threonine, serine, and threonine, respectively. The mutagenized gene dusters were able to produce S fimbrial adhesin complexes consisting of the S-specific subunit proteins including the adhesin SfaS. The mutant clones were further characterized by hemagglutination and by enzyme-linked immunoassay tests with antifimbria- and anti-adhesin-specific monoclonal antibodies, one of which is able to block S-specific binding (Moch et al., Proc. Natl. Acad. Sei. USA 84:3462-3466, 1987). The lysine-122 mutantclone was indistinguishable from the wild-type clone in these assays. Replacement of Iysine 116 and ai'ginine 118, however, abolished hemagglutination and resulted in clones which showed a weak (Iysine 116) or a negative (arginine 118) reaction with the antiadhesin-specific antibody Al. We therefore suggest that Iysine 116 and arginine 118 have an inßuence on binding of SfaS to the sialic acid residue of the receptor molecule. Substitution of arginine 118 by serine also had a negative efl"ect on the amount of SfaS adhesin proteins isolated from the S fimbrial adhesin complex.
Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.
The white-opaque switch is a bistable, epigenetic transition affecting multiple traits in Candida albicans including mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state of C. albicans in the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition both in vitro and in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state.
Oligopeptides incorporating \(N3\)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP), an inhibitor of glucosamine-6-phosphate synthase, exhibited growth inhibitory activity against \(Candida\) \(albicans\), with minimal inhibitory concentration values in the 0.05–50 μg mL\(^{-1}\) range. Uptake by the peptide permeases was found to be the main factor limiting an anticandidal activity of these compounds. Di- and tripeptide containing FMDP (F2 and F3) were transported by Ptr2p/Ptr22p peptide transporters (PTR) and FMDP-containing hexa-, hepta-, and undecapeptide (F6, F7, and F11) were taken up by the oligopeptide transporters (OPT) oligopeptide permeases, preferably by Opt2p/Opt3p. A phenotypic, apparent resistance of \(C. albicans\) to FMDP-oligopeptides transported by OPT permeases was triggered by the environmental factors, whereas resistance to those taken up by the PTR system had a genetic basis. Anticandidal activity of longer FMDP-oligopeptides was strongly diminished in minimal media containing easily assimilated ammonium sulfate or L-glutamine as the nitrogen source, both known to downregulate expression of the OPT genes. All FMDP-oligopeptides tested were more active at lower pH and this effect was slightly more remarkable for peptides F6, F7, and F11, compared to F2 and F3. Formation of isolated colonies was observed inside the growth inhibitory zones induced by F2 and F3 but not inside those induced by F6, F7, and F11. The vast majority (98%) of those colonies did not originate from truly resistant cells. The true resistance of 2% of isolates was due to the impaired transport of di- and to a lower extent, tripeptides. The resistant cells did not exhibit a lower expression of \(PTR2\), \(PTR22\), or \(OPT1–3\) genes, but mutations in the \(PTR2\) gene resulting in T422H, A320S, D119V, and A320S substitutions in the amino acid sequence of Ptr2p were found.