Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Language
- English (4)
Keywords
- consortium (2)
- genetic modifiers (2)
- single-nucleotide polymorphisms (2)
- DNA (1)
- NEIL2 (1)
- OGG1 (1)
- Ovarian (1)
- body mass index (1)
- breast cancer (1)
- cell (1)
Institute
EU-Project number / Contract (GA) number
- 223175 (1)
Background
Presence of clonal hematopoiesis of indeterminate potential (CHIP) is associated with a higher risk of atherosclerotic cardiovascular disease, cancer, and mortality. The relationship between a healthy lifestyle and CHIP is unknown.
Methods and Results
This analysis included 8709 postmenopausal women (mean age, 66.5 years) enrolled in the WHI (Women's Health Initiative), free of cancer or cardiovascular disease, with deep‐coverage whole genome sequencing data available. Information on lifestyle factors (body mass index, smoking, physical activity, and diet quality) was obtained, and a healthy lifestyle score was created on the basis of healthy criteria met (0 point [least healthy] to 4 points [most healthy]). CHIP was derived on the basis of a prespecified list of leukemogenic driver mutations. The prevalence of CHIP was 8.6%. A higher healthy lifestyle score was not associated with CHIP (multivariable‐adjusted odds ratio [OR] [95% CI], 0.99 [0.80–1.23] and 1.13 [0.93–1.37]) for the upper (3 or 4 points) and middle category (2 points), respectively, versus referent (0 or 1 point). Across score components, a normal and overweight body mass index compared with obese was significantly associated with a lower odds for CHIP (OR, 0.71 [95% CI, 0.57–0.88] and 0.83 [95% CI, 0.68–1.01], respectively; P‐trend 0.0015). Having never smoked compared with being a current smoker tended to be associated with lower odds for CHIP.
Conclusions
A healthy lifestyle, based on a composite score, was not related to CHIP among postmenopausal women. However, across individual lifestyle factors, having a normal body mass index was strongly associated with a lower prevalence of CHIP. These findings support the idea that certain healthy lifestyle factors are associated with a lower frequency of CHIP.
Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7x10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95% CI: 1.03-1.21, p = 4.8x10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
Introduction:
Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.
Methods:
We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.
Results:
We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.
Conclusions:
This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 - 1.15, p = 1.9 x 10\(^{-4}\) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 - 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted p\(_{interaction}\) values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.