Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2022 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
Institute
Global Existence and Uniqueness Results for Nematic Liquid Crystal and Magnetoviscoelastic Flows
(2022)
Liquid crystals and polymeric fluids are found in many technical applications with liquid crystal displays probably being the most prominent one. Ferromagnetic materials are well established in industrial and everyday use, e.g. as magnets in generators, transformers and hard drive disks. Among ferromagnetic materials, we find a subclass which undergoes deformations if an external magnetic field is applied. This effect is exploited in actuators, magnetoelastic sensors, and new fluid materials have been produced which retain their induced magnetization during the flow.
A central issue consists of a proper modelling for those materials. Several models exist regarding liquid crystals and liquid crystal flows, but up to now, none of them has provided a full insight into all observed effects. On materials encompassing magnetic, elastic and perhaps even fluid dynamic effects, the mathematical literature seems sparse in terms of models. To some extent, one can unify the modeling of nematic liquid crystals and magnetoviscoelastic materials employing a so-called energetic variational approach.
Using the least action principle from theoretical physics, the actual task reduces to finding appropriate energies describing the observed behavior. The procedure leads to systems of evolutionary partial differential equations, which are analyzed in this work.
From the mathematical point of view, fundamental questions on existence, uniqueness and stability of solutions remain unsolved. Concerning the Ericksen-Leslie system modelling nematic liquid crystal flows, an approximation to this model is given by the so-called Ginzburg-Landau approximation. Solutions to the latter are intended to approximately represent solutions to the Ericksen-Leslie system. Indeed, we verify this presumption in two spatial dimensions. More precisely, it is shown that weak solutions of the Ginzburg-Landau approximation converge to solutions of the Ericksen-Leslie system in the energy space for all positive times of evolution. In order to do so, theory for the Euler equations invented by DiPerna and Majda on weak compactness and concentration measures is used.
The second part of the work deals with a system of partial differential equations modelling magnetoviscoelastic fluids. We provide a well-posedness result in two spatial dimensions for large energies and large times. Along the verification of that conclusion, existing theory on the Ericksen-Leslie system and the harmonic map flow is deployed and suitably extended.