Refine
Has Fulltext
- yes (9)
Is part of the Bibliography
- yes (9)
Document Type
- Journal article (7)
- Doctoral Thesis (2)
Keywords
- ALS (1)
- Bose-Einstein-Kondensation (1)
- Exziton-Polariton (1)
- Fibrose (1)
- Magnetfeld-Wechselwirkung (1)
- Microcavity devices (1)
- Optischer Resonator (1)
- PPAR-gamme (1)
- Polariton (1)
- Polariton-Kondensation (1)
Institute
Sonstige beteiligte Institutionen
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Coherent Polariton Laser
(2016)
The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.
Kohärenz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher räumlicher Dimensionen
(2015)
Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidität und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation für Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand benötigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierfür bieten sich Quasiteilchen in Festkörpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend höher ist als für ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavitäten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabhängige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zurückgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem für die Untersuchung von Bose-Einstein-Kondensation in Festkörpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavitäten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung über die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Kohärenzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gewählt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavität umgeben sind.
Eindimensionale Polariton-Kondensation - räumliche Kohärenz der Polariton-Drähte
Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Drähten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtlängen und -breiten verwendet, um den Einfluss des zusätzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu können. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten räumlichen Kohärenz nach dem zentralen Abfall der g^(1)(r)-Funktion für große Abstände r in diesen Drähten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abkürzung aus dem Englischen off-diagonal long-range order).
Durch Analyse der Fernfeldemissionseigenschaften können mehrere Polariton-Äste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die räumliche Kohärenzfunktion g^(1)(r) mithilfe eines hochpräzisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei über große Abstände im Vergleich zur thermischen De-Broglie-Wellenlänge einen konstanten Plateauwert an, der abhängig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die räumliche Kohärenz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abfällt. Bei P=1,6P_S ist das Plateau maximal und beträgt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauhöhe abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Kohärenzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden können. Im letzten Teil des Kapitels wird noch die Kohärenzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D).
Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavität
Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavität untersucht. Der Aufbau des unteren Spiegels und der Kavität inklusive der 12 verwendeten Quantenfilme ist analog zu den gewöhnlichen Mikrokavitäten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abkürzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiterübergang (größt möglichster Brechungsindexkontrast). Durch die quadratische Strukturgröße des Gitters (Seitenlänge 5µm) sind die Polaritonen zusätzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden können (Einschluss auf der ungefähren Größe der thermischen De-Broglie-Wellenlänge). Um den Erhalt der starken Kopplung über die Kondensationsschwelle hinaus nachweisen zu können, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgeführt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Kohärenzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekohärenzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte größer als 1 an. Für einen gewöhnlichen Photon-Laser (VCSEL, Abkürzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar.
Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld
Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei möglichen Regime der Mikrokavitätsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erhöhung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abhängigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons bestätigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine größere diamagnetische Verschiebung gemessen als für die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und Löchern erklärt, was in einer Erhöhung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollständigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, während zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabhängigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. Für das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann.
Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity
(2014)
We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct nonlinearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with increased particle density. The temporal coherence of the device at threshold is underlined by a characteristic drop of the second order coherence function to a value close to 1. Furthermore an external electric field is used to switch between polariton regime, polariton condensate and photon lasing.
The possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone.
Background: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS).
Methods/Principal Findings: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated.
Conclusion/Significance: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole.
Highly efficient single-photon sources (SPS) can increase the secure key rate of quantum key distribution (QKD) systems compared to conventional attenuated laser systems. Here we report on a free space QKD test using an electrically driven quantum dot single-photon source (QD SPS) that does not require a separate laser setup for optical pumping and thus allows for a simple and compact SPS QKD system. We describe its implementation in our 500 m free space QKD system in downtown Munich. Emulating a BB84 protocol operating at a repetition rate of 125 MHz, we could achieve sifted key rates of 5-17 kHz with error ratios of 6-9% and g((2))(0)-values of 0.39-0.76.
Die im Rahmen der Arbeit erzielten Ergebnisse liefern neue Erkenntnisse über einen neuen Sternzellsubtyp der murinen Leber. Bei Gewebeverletzung differenzieren Sternzellen im Allgemeinen zu Myofibroblasten, welche Extrazellulärmatrix produzieren. Des Weiteren sind Sternzellen die Perizyten der Leber und spielen eine Rolle in der Angiogenese und Gefäßremodellierung.
Der in präliminären Untersuchungen identifizierte Sternzellsubtyp zeichnet sich durch die Expression von tdTomato in Abhängigkeit des SMMHC-Promotors aus (SMMHC/tdTomato\(^+\) Sternzellen). In dieser Arbeit wurden SMMHC/tdTomato\(^+\) Sternzellen immunhistochemisch unter physiologischen und fibrotischen Bedingungen untersucht.
Mit Hilfe von Lineage Tracing konnte zunächst die Zellmauserung der SMMHC/tdTomato\(^+\) Sternzellen gezeigt werden. Durch Leberzonen-spezifische Marker wurde daraufhin nachgewiesen, dass SMMHC/tdTomato\(^+\) Sternzellen in Zone 1 des Leberazinus lokalisiert sind, weswegen diese Zellen im Weiteren „Zone 1-HSC“ genannt wurden. Als potenzielle Progenitorzellnische der Zone 1-HSC wurde das Portalfeld eingegrenzt.
Außerdem wurde die Funktion der Zone 1-HSC in der CCl\(_4\)-induzierten Leberfibrose untersucht. Es stellte sich heraus, dass Zone 1-HSC bereits früh in der Fibrose die Zonierung verlieren und diese auch nach Regenerationszeit nicht wiederhergestellt wird. Es wurde nachgewiesen, dass Zone 1-HSC nicht zu Myofibroblasten differenzieren. Stattdessen spielen Zone 1-HSC möglicherweise eine Rolle in der sinusoidalen Kapillarisierung in Folge einer CCl\(_4\)-induzierten Fibrose.
Background
We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder.
Methods
Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays.
Results
We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype.
Conclusions
Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.