Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (3)
Language
- English (3)
Keywords
- Chlamydia trachomatis (1)
- Mcl-1 (1)
- actin (1)
- acute myeloid leukaemia (1)
- anticoagulation (1)
- antithrombotic therapy (1)
- atrial fibrillation (1)
- bridging (1)
- cell-autonomous defense (1)
- deubiquitinase (1)
Institute
- Medizinische Klinik und Poliklinik II (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (1)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (1)
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (1)
- Pathologisches Institut (1)
- Rudolf-Virchow-Zentrum (1)
Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia
(2021)
The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.
Background
Increasing numbers of patients receiving oral anticoagulants are undergoing elective surgery. Low molecular weight heparin (LMWH) is frequently applied as bridging therapy during perioperative interruption of anticoagulation. The aim of this study was to explore the postoperative bleeding risk of patients receiving surgery under bridging anticoagulation.
Methods
We performed a monocentric retrospective two-arm matched cohort study. Patients that received perioperative bridging anticoagulation were compared to a matched control group with identical surgical procedure, age, and sex. Emergency and vascular operations were excluded. The primary endpoint was the incidence of major postoperative bleeding. Secondary endpoints were minor postoperative bleeding, thromboembolic events, length of stay, and in-hospital mortality. Multivariate analysis explored risk factors of major postoperative bleeding.
Results
A total of 263 patients in each study arm were analyzed. The patient cohort included the entire field of general and visceral surgery including a large proportion of major oncological resections. Bridging anticoagulation increased the postoperative incidence of major bleeding events (8% vs. 1%; p < 0.001) as well as minor bleeding events (14% vs. 5%; p < 0.001). Thromboembolic events were equally rare in both groups (1% vs. 2%; p = 0.45). No effect on mortality was observed (1.5% vs. 1.9%). Independent risk factors of major postoperative bleeding were full-therapeutic dose of LMWH, renal insufficiency, and the procedure-specific bleeding risk.
Conclusion
Perioperative bridging anticoagulation, especially full-therapeutic dose LMWH, markedly increases the risk of postoperative bleeding complications in general and visceral surgery. Surgeons should carefully consider the practice of routine bridging.
Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique α-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl-1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNγ and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a deubiquitinating activity exerting a function in selective stabilization of host proteins and protection from host defense.