Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (6)
Language
- English (6)
Keywords
- Neurobiologie (2)
- Aspergillus fumigatus (1)
- Axonal degeneration (1)
- IgE (1)
- IgE sensitazion (1)
- In-vivo dia lysis (1)
- Neurophysiologie (1)
- Rat hippocampus (1)
- Silver degeneration staining (1)
- YoelII-Nigeriensis (1)
Institute
EU-Project number / Contract (GA) number
- 261357 (1)
MeDALL (Mechanisms of the Development of ALLergy; EU FP7-CP-IP; Project No: 261357; 2010-2015) has proposed an innovative approach to develop early indicators for the prediction, diagnosis, prevention and targets for therapy. MeDALL has linked epidemiological, clinical and basic research using a stepwise, large-scale and integrative approach: MeDALL data of precisely phenotyped children followed in 14 birth cohorts spread across Europe were combined with systems biology (omics, IgE measurement using microarrays) and environmental data. Multimorbidity in the same child is more common than expected by chance alone, suggesting that these diseases share causal mechanisms irrespective of IgE sensitization. IgE sensitization should be considered differently in monosensitized and polysensitized individuals. Allergic multimorbidities and IgE polysensitization are often associated with the persistence or severity of allergic diseases. Environmental exposures are relevant for the development of allergy-related diseases. To complement the population-based studies in children, MeDALL included mechanistic experimental animal studies and in vitro studies in humans. The integration of multimorbidities and polysensitization has resulted in a new classification framework of allergic diseases that could help to improve the understanding of genetic and epigenetic mechanisms of allergy as well as to better manage allergic diseases. Ethics and gender were considered. MeDALL has deployed translational activities within the EU agenda.
The effect of 6-chloro-2,3,4,5-tetrahydro-3-methyi-1-H-3-benzazepine (SKF 86466), a selectlve nonimldazoline alpha-2 adrenoceptor antagonlst, on hippocampal re1ease of norepinephrine and dopamlne in conscious rats was lnvestigated by /n vlvo mlcrodialysis and high-pressure liquid chromatography. Additionally, extracellular concentrations of hippocampal dopamine (DA) and norepinephrtne (NE), durtng Infusion of selective monoamine uptake Inhibitors, were determined in freely moving rats. The basal concentration of NE in the dialysate was 4.9 ± 0.3 pg/20 pl. lntravenous admlnistratlon of 5 or 10 mgJkg of SKF 86466 was associated wlth a transierlt inc:rease (30 min) of 2-fold (12 ± 1 pg/20 ,d; p < .05) and 8-fold (39 ± 3 pg/20 pl; p < .05), respectlvely, in dlalysate NE, whereas a 1-mgfkg dose had no effect. DA was not detected in basal dlalysates, but after the adminlstratlon of 5 or 10 mgJkg of SKF 86466, 3.9 ± 0.4 and 6.4 ± 0.6 pg/20 pl, respectlvely, was present in the dialysates. The rnaxlmum increase in dialysate DA was reached 60 to 90 min after SKF 86466. The DA was not derived from plasma because plasma NE was elevated after the 5 mgJkg dose of SKF 86466 whereas no plasma DA was detected. ln order to determlne whether DA was present in noradrenergic nerve termlnals, the dopamine ß-hydroxylase Inhibitor SKF 1 02698 was administered (50 mgJkg i.p.). The Inhibitor decreased dialysate NE but DA was stin not detected in the dialysate. When SKF 86466 (5 mgJkg t.v.) was adminlstered 4 hr after SKF 102698, DA appeared in the dialysate but there was no lncrease in dialysate NE. Administration through the dialysis probe of the DA uptake Inhibitor, GBR-12909 (0.1 and 1 pM), dose-dependently lnaeased DA Ieveis to 5.7 ± 1.2 and 9.6 ± 2.8 pg/20 pl, respectively. GBR-12909 had no effect on hippocampal NE. Desipramine (5 and 10 pM) lncreased dose-dependently dialysate NE and lncreased DA concentrations to detectable Ieveis (2.7 ± 0.5 and 3.5 ± 0.7 pg/20 ,d, respectively). These results suggest that the a/pha-2 adrenoceptors modulate both NE and DA release in the rat hlppocampus and that DA detected in the hlppocampal dialysate might be released from dopaminergic neurons.
We used a sensitive silver degeneration staining method to study the effects of insertion of microdialysis probes in rat dorsal hippocampus and neocortex. Nine animals were sacrificed 24 h, 3 days or 7 days after implantation of dialysis tubing. Although mild neuronal cell death and small petechial hemorrhages were seen in elose proximity to the implantation site, the striking finding was the presence of degenerating axons both adjacent to the implantation site and in remote sites such as the corpus callosum and contralateral hippocampus. The observed changes could alter brain function near or remote from the implantation site and should be considered in analysis of dialysis experiments.
Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown.
Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163.
Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.
Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.
Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.
Background
Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke.
Methods
We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602.
Findings
Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20–1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82–3·29) for intracranial haemorrhage and 1·23 (1·08–1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08–6·72] for intracranial haemorrhage vs 1·47 [1·19–1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36–9·05] vs 1·43 [1·07–1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69–15·81] vs 1·86 [1·23–2·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 27 intracranial haemorrhages [17–41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46–108] per 1000 patient-years vs 39 intracranial haemorrhages [21–67] per 1000 patient-years).
Interpretation
In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden.