Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Keywords
- RSK (3)
- Drosophila (2)
- Coffin–Lowry syndrome (1)
- ERK (1)
- Genmutation (1)
- MAPK signaling (1)
- Motoneuron (1)
- Period (1)
- S6KII RSK (1)
- Shaggy kinase (1)
Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.
In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht
werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch
mentale Retardierung charakterisiert ist. RSK2 ist hauptsächlich in Regionen des Gehirns
exprimiert, in denen Lernen und Gedächtnisbildung stattfinden. In Mäusen und Drosophila, die
als Modellorganismen für CLS dienen, konnten auf makroskopischer Ebene keine
Veränderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen
Verhaltensstudien Defekte im Lernen und der Gedächtnisbildung beobachtet.
Die synaptische Plastizität und die einhergehenden Veränderungen in den Eigenschaften der
Synapse sind fundamental für adaptives Verhalten. Zur Analyse der synaptischen Plastizität
eignet sich das neuromuskuläre System von Drosophila als Modell wegen des stereotypen
Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren
Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs
aus Säugern, die wesentlich für die Bildung von LTP im Hippocampus sind.
Zunächst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der
präsynaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion
ausüben könnte. Morphologische Untersuchungen der Struktur der neuromuskulären Synapsen
konnten aufzeigen, dass durch den Verlust von RSK die Größe der neuromuskulären Synapse,
der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr
Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der
neuromuskulären Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die
postsynaptische Sensitivität, nicht aber die Freisetzung der Neurotransmitter an der
präsynaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine
postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach
an der Regulation der synaptischen Plastizität glutamaterger Synapsen beteiligt.
Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes
ERK an der präsynaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK
reguliert wird. Darüber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den
Verlust von RSK hyperaktiviertes ERK in den Zellkörpern der Motoneurone vorliegt. RSK
wird durch den ERK/MAPK-Signalweg aktiviert und übernimmt eine Funktion sowohl als
Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den
Zellkörpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Darüber
hinaus könnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der
Motoneurone regulieren.
Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der
synaptischen Plastizität beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung
der LTP reguliert, sollte in dieser Arbeit aufgeklärt werden, ob der Einfluss von RSK auf die
synaptische Plastizität durch seine Funktion als Negativregulator von ERK zustande kommt.
Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in
Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl
der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskulären Synapse auf die Funktion
von RSK als Negativregulator von ERK zurückzuführen ist. Die Größe der neuromuskulären
Synapse sowie die Größe der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK
allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs.
Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen
neuropathologischen Erkrankungen beeinträchtigt ist. Die durchgeführten Untersuchungen des
axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation
des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten
wurden BRP- und CSP-Agglomerate nachgewiesen. RSK könnte an der Regulation des
axonalen Transports von präsynaptischem Material beteiligt sein. Durch den Verlust von RSK
wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, dafür verweilten mehr Mitochondrien in stationären Phasen. Diese Ergebnisse zeigen, dass
auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeinträchtigt
ist.
Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin–Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.