### Refine

#### Has Fulltext

- yes (2)

#### Is part of the Bibliography

- yes (2)

#### Year of publication

- 2021 (2)

#### Document Type

- Journal article (1)
- Doctoral Thesis (1)

#### Language

- English (2)

#### Keywords

- Algebraische Zahlentheorie (1)
- Cayley graph (1)
- EJMA-D-19-00287 (1)
- Graph (1)
- Graph eigenvalues (1)
- Graph products (1)
- Graph spectrum (1)
- Graphnullity (1)
- Integral graph (1)
- Kombinatorik (1)

#### Institute

We investigate eigenvalues of the zero-divisor graph Γ(R) of finite commutative rings R and study the interplay between these eigenvalues, the ring-theoretic properties of R and the graph-theoretic properties of Γ(R). The graph Γ(R) is defined as the graph with vertex set consisting of all nonzero zero-divisors of R and adjacent vertices x, y whenever xy=0. We provide formulas for the nullity of Γ(R), i.e., the multiplicity of the eigenvalue 0 of Γ(R). Moreover, we precisely determine the spectra of \(\Gamma ({\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p)\) and \(\Gamma ({\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p)\) for a prime number p. We introduce a graph product ×Γ with the property that Γ(R)≅Γ(R\(_1\))×Γ⋯×ΓΓ(R\(_r\)) whenever R≅R\(_1\)×⋯×R\(_r\). With this product, we find relations between the number of vertices of the zero-divisor graph Γ(R), the compressed zero-divisor graph, the structure of the ring R and the eigenvalues of Γ(R).

In the present thesis we investigate algebraic and arithmetic properties of graph spectra. In particular, we study the algebraic degree of a graph, that is the dimension of the splitting field of the characteristic polynomial of the associated adjacency matrix over the rationals, and examine the question whether there is a relation between the algebraic degree of a graph and its structural properties. This generalizes the yet open question ``Which graphs have integral spectra?'' stated by Harary and Schwenk in 1974.
We provide an overview of graph products since they are useful to study graph spectra and, in particular, to construct families of integral graphs. Moreover, we present a relation between the diameter, the maximum vertex degree and the algebraic degree of a graph, and construct a potential family of graphs of maximum algebraic degree.
Furthermore, we determine precisely the algebraic degree of circulant graphs and find new criteria for isospectrality of circulant graphs. Moreover, we solve the inverse Galois problem for circulant graphs showing that every finite abelian extension of the rationals is the splitting field of some circulant graph. Those results generalize a theorem of So who characterized all integral circulant graphs. For our proofs we exploit the theory of Schur rings which was already used in order to solve the isomorphism problem for circulant graphs.
Besides that, we study spectra of zero-divisor graphs over finite commutative rings.
Given a ring \(R\), the zero-divisor graph over \(R\) is defined as the graph with vertex set being the set of non-zero zero-divisors of \(R\) where two vertices \(x,y\) are adjacent if and only if \(xy=0\). We investigate relations between the eigenvalues of a zero-divisor graph, its structural properties and the algebraic properties of the respective ring.