Refine
Has Fulltext
- yes (9)
Is part of the Bibliography
- yes (9)
Document Type
- Journal article (9)
Language
- English (9)
Keywords
- flow cytometry (2)
- phosphorylation (2)
- platelet physiology (2)
- platelets (2)
- BMI (1)
- GFAP (1)
- MRI (1)
- NRG1 (1)
- NfL (1)
- STEMI (1)
Institute
- Institut für Klinische Transfusionsmedizin und Hämotherapie (5)
- Comprehensive Cancer Center Mainfranken (1)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Frauenklinik und Poliklinik (1)
- Institut für Molekulare Infektionsbiologie (1)
- Institut für Virologie und Immunbiologie (1)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
- Medizinische Klinik und Poliklinik I (1)
- Medizinische Klinik und Poliklinik II (1)
Sonstige beteiligte Institutionen
EU-Project number / Contract (GA) number
- 336045 (1)
Background
Washing of platelets is an important procedure commonly used for experimental studies, e.g. in cardiovascular research. As a known phenomenon, responsiveness to adenosine diphosphate (ADP) is reduced in washed platelets, although underlying molecular mechanisms—potentially interfering with experimental results—have not been thoroughly studied.
Objectives
Since ADP mediates its effects via three purinergic receptors P2Y1, P2X1 and P2Y12, their surface expression and function were investigated in washed platelets and, for comparison, in platelet-rich-plasma (PRP) at different time points for up to 2 hours after preparation.
Results
In contrast to PRP, flow cytometric analysis of surface expression in washed platelets revealed an increase of all receptors during the first 60 minutes after preparation followed by a significant reduction, which points to an initial preactivation of platelets and consecutive degeneration. The activity of the P2X1 receptor (measured by selectively induced calcium flux) was substantially maintained in both PRP and washed platelets. P2Y12 function (determined by flow cytometry as platelet reactivity index) was partially reduced after platelet washing compared to PRP, but remained stable in course of ongoing storage. However, the function of the P2Y1 receptor (measured by selectively induced calcium flux) continuously declined after preparation of washed platelets.
Conclusion
In conclusion, decreasing ADP responsiveness in washed platelets is particularly caused by impaired activity of the P2Y1 receptor associated with disturbed calcium regulation, which has to be considered in the design of experimental studies addressing ADP mediated platelet function.
Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.
We aimed to compare the clinical data at first presentation to inpatient treatment of children (<14 years) vs. adolescents (≥14 years) with anorexia nervosa (AN), focusing on duration of illness before hospital admission and body mass index (BMI) at admission and discharge, proven predictors of the outcomes of adolescent AN. Clinical data at first admission and at discharge in 289 inpatients with AN (children: n = 72; adolescents: n = 217) from a German multicenter, web-based registry for consecutively enrolled patients with childhood and adolescent AN were analyzed. Inclusion criteria were a maximum age of 18 years, first inpatient treatment due to AN, and a BMI <10th BMI percentile at admission. Compared to adolescents, children with AN had a shorter duration of illness before admission (median: 6.0 months vs. 8.0 months, p = 0.004) and higher BMI percentiles at admission (median: 0.7 vs. 0.2, p = 0.004) as well as at discharge (median: 19.3 vs. 15.1, p = 0.011). Thus, in our study, children with AN exhibited clinical characteristics that have been associated with better outcomes, including higher admission and discharge BMI percentile. Future studies should examine whether these factors are actually associated with positive long-term outcomes in children.
Background:
Platelets are important for effective hemostasis and considered to be involved in pathophysiological processes, e.g. in cardiovascular diseases. Platelets provided for research or for therapeutic use are frequently separated from citrated whole blood (WB) stored for different periods of time. Although functionally intact platelets are required, the stability of platelet integrity, e.g. adenosine diphosphate (ADP) mediated responsiveness, has never been thoroughly investigated in citrated WB under ex vivo conditions.
Objectives:
Platelet integrity was evaluated at different time points in citrated WB units, collected from healthy donors and stored for 5 days at ambient temperature. The analysis included the measurement of activation markers, of induced light transmission aggregometry and of purinergic receptor expression or function. Inhibitory pathways were explored by determination of basal vasodilator-stimulated phosphoprotein (VASP)-phosphorylation, intracellular cyclic nucleotide levels and the content of phosphodiesterase 5A. Fresh peripheral blood (PB) samples served as controls.
Results:
On day 5 of storage, thrombin receptor activating peptide-6 (TRAP-6) stimulated CD62P expression and fibrinogen binding were comparable to PB samples. ADP induced aggregation continuously decreased during storage. Purinergic receptor expression remained unchanged, whereas the P2Y1 activity progressively declined in contrast to preserved P2Y12 and P2X1 function. Inhibitory pathways were unaffected except for a slight elevation of VASP phosphorylation at Ser\(^{239}\) on day 5.
Conclusion:
After 5 days of storage in citrated WB, platelet responsiveness to TRAP-6 is sufficiently maintained. However, ADP-mediated platelet integrity is more sensitive to deterioration, especially after storage for more than 2 days. Decreasing ADP-induced aggregation is particularly caused by the impairment of the purinergic receptor P2Y1 activity. These characteristics should be considered in the use of platelets from stored citrated WB for experimental or therapeutic issues.
Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0–4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.
Introduction
Cold storage of platelets is considered to contribute to lower risk of bacterial growth and to more efficient hemostatic capacity. For the optimization of storage strategies, it is required to further elucidate the influence of refrigeration on platelet integrity. This study focused on adenosine diphosphate (ADP)-related platelet responsiveness.
Materials and Methods
Platelets were prepared from apheresis-derived platelet concentrates or from peripheral whole blood, stored either at room temperature or at 4°C. ADP-induced aggregation was tested with light transmission. Activation markers, purinergic receptor expression, and P2Y12 receptor function were determined by flow cytometry. P2Y1 and P2X1 function was assessed by fluorescence assays, cyclic nucleotide concentrations by immunoassays, and vasodilator-stimulated phosphoprotein (VASP)-phosphorylation levels by Western blot analysis.
Results
In contrast to room temperature, ADP-induced aggregation was maintained under cold storage for 6 days, associated with elevated activation markers like fibrinogen binding or CD62P expression. Purinergic receptor expression was not essentially different, whereas P2Y1 function deteriorated rapidly at cold storage, but not P2Y12 activity. Inhibitory pathways of cold-stored platelets were characterized by reduced responses to nitric oxide and prostaglandin E1. Refrigeration of citrated whole blood also led to the attenuation of induced inhibition of platelet aggregation, detectable within 24 hours.
Conclusion
ADP responsiveness is preserved under cold storage for 6 days due to stable P2Y12 activity and concomitant disintegration of inhibitory pathways enabling a higher reactivity of stored platelets. The ideal storage time at cold temperature for the highest hemostatic effect of platelets should be evaluated in further studies.
Platelet Toll-Like-Receptor-2 and -4 Mediate Different Immune-Related Responses to Bacterial Ligands
(2022)
Background
Like immune cells, platelets express toll-like receptors (TLRs) on their surface membrane. TLR2 and TLR4 are able to recognize bacterial antigens and have the potential to influence hemostatic functions and classical intracellular signaling pathways. This study investigated the role of TLR2 and TLR4 for immune-related functions in human platelets.
Materials and Methods
Washed platelets and neutrophils were prepared from fresh human peripheral blood. Basal-, Pam3CSK4- (as TLR2 agonist) and Lipopolysaccharides (LPS; as TLR4 agonist) -induced CD62P expression, fibrinogen binding and TLR2 or TLR4 expression, intracellular reactive oxygen species (ROS) production in H2DCFDA-loaded platelets and uptake of fluorescence-labeled TLR ligands, and fluorophore-conjugated fibrinogen were evaluated by flow cytometry. Analysis of platelet–neutrophil complexes was performed after coincubation of washed platelets and neutrophils in the presence and absence of TLR2 or TLR4 agonists on poly-L-lysine coated surfaces, followed by immunostaining and immunofluorescence imaging.
Results
Pam3CSK4 rapidly and transiently increased TLR2 and TLR4 expression. Over the course of 30 minutes after activation with Pam3CSK4 and LPS, the expression of both receptors decreased. Pam3CSK4-stimulated intracellular ROS production and the uptake of TLR ligands or fibrinogen much stronger than LPS. Besides, TLR4 activation led to a significant increase of platelet–neutrophil contacts.
Conclusion
Stimulation leads to rapid mobilization of TLR2 or TLR4 to the platelet surface, presumably followed by receptor internalization along with bound TLR ligands. After activation, platelet TLR2 and TLR4 mediate different immune-related reactions. In particular, TLR2 induces intracellular responses in platelets, whereas TLR4 initiates interactions with other immune cells such as neutrophils.
Storage of platelet concentrates (PC) at cold temperature (CT) is discussed as an alternative to the current standard of storage at room temperature (RT). Recently, we could show that cold-induced attenuation of inhibitory signaling is an important mechanism promoting platelet reactivity. For developing strategies in blood banking, it is required to elucidate the time-dependent onset of facilitated platelet activation. Thus, freshly prepared platelet-rich-plasma (PRP) was stored for 1 and 2 h at CT (2–6 °C) or at RT (20–24 °C), followed by subsequent comparative analysis. Compared to RT, basal and induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation levels were decreased under CT within 1 h by approximately 20%, determined by Western blot analysis and flow cytometry. Concomitantly, ADP- and collagen-induced threshold aggregation values were enhanced by up to 30–40%. Furthermore, platelet-covered areas on collagen-coated slides and aggregate formation under flow conditions were increased after storage at CT, in addition to induced activation markers. In conclusion, a time period of 1–2 h for refrigeration is sufficient to induce an attenuation of inhibitory signaling, accompanied with an enhancement of platelet responsiveness. Short-term refrigeration may be considered as a rational approach to obtain PC with higher functional reactivity for the treatment of hemorrhage.
Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7–8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.