Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Keywords
- Bavaria (1)
- Bodenparameter (1)
- Datenanalyse (1)
- Klimamodell (1)
- Klimamodellierung (1)
- LiDAR (1)
- Modellierung (1)
- REMO (1)
- Topographie (1)
- Topographiedaten (1)
Institute
Sonstige beteiligte Institutionen
Das Ziel dieser Arbeit war neue Eingangsdaten für die Landoberflächenbeschreibung des regionalen Klimamodells REMO zu finden und ins Modell zu integrieren, um die Vorhersagequalität des Modells zu verbessern. Die neuen Daten wurden so in das Modell eingebaut, dass die bisherigen Daten weiterhin als Option verfügbar sind. Dadurch kann überprüft werden, ob und in welchem Umfang sich die von jedem Klimamodell benötigten Rahmendaten auf Modellergebnisse auswirken. Im Zuge der Arbeit wurden viele unterschiedliche Daten und Methoden zur Generierung neuer Parameter miteinander verglichen, denn neben dem Ersetzen der konstanten Eingangswerte für verschiedene Oberflächenparameter und den damit verbundenen Änderungen wurden als zusätzliche Verbesserung auch Veränderungen an der Parametrisierung des Bodens speziell in Hinblick auf die Bodentemperaturen in REMO vorgenommen. Im Rahmen dieser Arbeit wurden die durch die verschiedenen Änderungen ausgelösten Auswirkungen für das CORDEX-Gebiet EUR-44 mit einer Auflösung von ca. 50km und für das in dem darin eingebetteten neu definierten Deutschlandgebiet GER-11 mit einer Auflösung von ca. 12km getestet sowie alle Änderungen anhand von verschiedenen Beobachtungsdatensätzen validiert.
Die vorgenommenen Arbeiten gliederten sich in drei Hauptteile. Der erste Teil bestand in dem vom eigentlichen Klimamodell unabhängigen Vergleich der verschiedenen Eingangsdaten auf unterschiedlichen Auflösungen und deren Performanz in allen Teilen der Erde, wobei ein besonderer Fokus auf der Qualität in den späteren Modellgebieten lag. Unter Berücksichtigung der Faktoren, wie einer globalen Verfügbarkeit der Daten, einer verbesserten räumlichen Auflösung und einer kostenlosen Nutzung der Daten sowie verschiedener Validationsergebnissen von anderen Studien, wurden in dieser Arbeit vier neue Topographiedatensätze (SRTM, ALOS, TANDEM und ASTER) und drei neue Bodendatensätze (FAOn, Soilgrid und HWSD) für die Verwendung im Präprozess von REMO aufbereitet und miteinander sowie mit den bisher in REMO verwendeten Daten verglichen. Auf Grundlage dieser Vergleichsstudien schieden bei den Topographiedaten die verwendeten Datensatz-Versionen von SRTM, ALOS und TANDEM für die in dieser Arbeit durchgeführten REMO-Läufe aus. Bei den neuen Bodendatensätzen wurde ausgenutzt, dass diese verschiedenen Bodeneigenschaften für unterschiedliche Tiefen als Karten zur Verfügung stellen. In REMO wurden bisher alle benötigten Bodenparameter abhängig von fünf verschiedenen Bodentexturklassen und einer zusätzlichen Torfklasse ausgewiesen und als konstant über die gesamte Modellbodensäule (bis ca. 10m) angenommen. Im zweiten Teil wurden auf Basis der im ersten Teil ausgewählten neuen Datensätze und den neu verfügbaren Bodenvariablen verschiedene Sensitivitätsstudien über das Beispieljahr 2000 durchgeführt. Dabei wurden verschiedene neue Parametrisierungen für die bisher aus der Textur abgeleiteten Bodenvariablen und die Parametrisierung von weiteren hydrologischen und thermalen Bodeneigenschaften verglichen. Ferner wurde aufgrund der neuen nicht über die Tiefe konstanten Bodeneigenschaften eine neue numerische Methode zur Berechnung der Bodentemperaturen der fünf Schichten in REMO getestet, welche wiederum andere Anpassungen erforderte. Der Test und die Auswahl der verschiedenen Datensatz- und Parametrisierungsversionen auf die Modellperformanz wurde in drei Experimentpläne unterteilt. Im ersten Plan wurden die Auswirkungen der ausgewählten Topographie- und Bodendatensätze überprüft. Der zweite Plan behandelte die Unterschiede der verschiedenen Parametrisierungsarten der Bodenvariablen hinsichtlich der verwendeten Variablen zur Berechnung der Bodeneigenschaften, der über die Tiefe variablen oder konstanten Eigenschaften und der verwendeten Berechnungsmethode der Bodentemperaturänderungen. Durch die Erkenntnisse aus diesen beiden Experimentplänen, die für beide Untersuchungsgebiete durchgeführt wurden, ergaben sich im dritten Plan weitere Parametrisierungsänderungen. Alle Änderungen dieses dritten Experimentplans wurden sukzessiv getestet, sodass der paarweise Vergleich von zwei aufeinanderfolgenden Modellläufen die Auswirkungen der Neuerung im jeweils zweiten Lauf widerspiegelt. Der letzte Teil der Arbeit bestand aus der Analyse von fünf längeren Modellläufen (2000-2018), die zur Überprüfung der Ergebnisse aus den Sensitivitätsstudien sowie zur Einschätzung der Performanz in weiteren teilweise extremen atmosphärischen Bedingungen durchgeführt wurden. Hierfür wurden die bisherige Modellversion von REMO (id01) für die beiden Untersuchungsgebiete EUR-44 und GER-11 als Referenzläufe, zwei aufgrund der Vergleichsergebnisse von Experimentplan 3 selektierte Modellversionen (id06 und id15a für GER-11) sowie die finale Version (id18a für GER-11), die alle vorgenommenen Änderungen dieser Arbeit enthält, ausgewählt.
Es stellte sich heraus, dass sowohl die neuen Topographiedaten als auch die neuen Bodendaten große Differenzen zu den bisherigen Daten in REMO haben. Zudem änderten sich die von diesen konstanten Eingangsdaten abgeleiteten Hilfsvariablen je nach verwendeter Parametrisierung sehr deutlich. Dies war besonders gut anhand der Bodenparameter zu erkennen. Sowohl die räumliche Verteilung als auch der Wertebereich der verschiedenen Modellversionen unterschieden sich stark. Eine Einschätzung der Qualität der resultierenden Parameter wurde jedoch dadurch erschwert, dass auch die verschiedenen zur Validierung herangezogenen Bodendatensätze für diese Parameter deutlich voneinander abweichen. Die finale Modellversion id18a ähnelte trotz der umfassenden Änderungen in den meisten Variablen den Ergebnissen der bisherigen REMO-Version. Je nach zeitlicher und räumlicher Aggregation sowie unterschiedlichen Regionen und Jahreszeiten wurden leichte Verbesserungen, aber auch leichte Verschlechterungen im Vergleich zu den klimatologischen Validationsdaten festgestellt. Größere Veränderungen im Vergleich zur bisherigen Modellversion konnten in den tieferen Bodenschichten aufgezeigt werden, welche allerdings aufgrund von fehlenden Validationsdaten nicht beurteilt werden konnten. Für alle 2m-Temperaturen konnte eine tendenzielle leichte Erwärmung im Vergleich zum bisherigen Modelllauf beobachtet werden, was sich einerseits negativ auf die ohnehin durchschnittlich zu hohe Minimumtemperatur, aber andererseits positiv auf die bisher zu niedrige Maximumtemperatur des Modells in den betrachteten Gebieten auswirkte. Im Niederschlagssignal und in den 10m-Windvariablen konnten keine signifikanten Änderungen nachgewiesen werden, obwohl die neue Topographie an manchen Stellen im Modellgebiet deutlich von der bisherigen abweicht. Des Weiteren variierte das Ranking der verschiedenen Modellversionen jeweils nach dem angewendeten Qualitätsindex.
Um diese Ergebnisse besser einordnen zu können, muss berücksichtigt werden, dass die neuen Daten für Modellgebiete mit 50 bzw. 12km räumlicher Auflösung und der damit verbundenen hydrostatischen Modellversion getestet wurden. Zudem sind vor allem in Fall der Topographie die bisher enthaltenen GTOPO-Daten (1km Auflösung) für die Aggregation auf diese gröbere Modellauflösung geeignet. Die bisherigen Bodendaten stoßen jedoch mit 50km Auflösung bereits an ihre Grenzen. Zusätzlich ist zu beachten, dass nicht nur die Mittelwerte dieser Daten, sondern auch deren Subgrid-Variabilität als Variablen im Modell für verschiedene Parametrisierungen verwendet werden. Daher ist es essentiell, dass die Eingangsdaten eine deutlich höhere Auflösung bereitstellen als die zur Modellierung definierte Auflösung. Für lokale Klimasimulationen mit Auflösungen im niedrigen Kilometerbereich spielen auch die Vertikalbewegungen (nicht-hydrostatische Modellversion) eine wichtige Rolle, die stark von der Topographie sowie deren horizontaler und vertikaler Änderungsrate beeinflusst werden, was die in dieser Arbeit eingebauten wesentlich höher aufgelösten Daten für die zukünftige Weiterentwicklung von REMO wertvoll machen kann.
The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.
Statistical modeling of phenology in Bavaria based on past and future meteorological information
(2020)
Plant phenology is well known to be affected by meteorology. Observed changes in the occurrence of phenological phases arecommonly considered some of the most obvious effects of climate change. However, current climate models lack a representationof vegetation suitable for studying future changes in phenology itself. This study presents a statistical-dynamical modelingapproach for Bavaria in southern Germany, using over 13,000 paired samples of phenological and meteorological data foranalyses and climate change scenarios provided by a state-of-the-art regional climate model (RCM). Anomalies of severalmeteorological variables were used as predictors and phenological anomalies of the flowering date of the test plantForsythiasuspensaas predictand. Several cross-validated prediction models using various numbers and differently constructed predictorswere developed, compared, and evaluated via bootstrapping. As our approach needs a small set of meteorological observationsper phenological station, it allows for reliable parameter estimation and an easy transfer to other regions. The most robust andsuccessful model comprises predictors based on mean temperature, precipitation, wind velocity, and snow depth. Its averagecoefficient of determination and root mean square error (RMSE) per station are 60% and ± 8.6 days, respectively. However, theprediction error strongly differs among stations. When transferred to other indicator plants, this method achieves a comparablelevel of predictive accuracy. Its application to two climate change scenarios reveals distinct changes for various plants andregions. The flowering date is simulated to occur between 5 and 25 days earlier at the end of the twenty-first century comparedto the phenology of the reference period (1961–1990).