Refine
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Document Type
- Journal article (5)
Language
- English (5)
Keywords
- photoinduced electron transfer (2)
- polycyclic aromatic hydrocarbons (2)
- Aromatic-hydrocarbon (1)
- Carbon (1)
- Corannulene (1)
- Dyes (1)
- Functionalization (1)
- Graphene nanoribbons (1)
- Liquid-crystalline (1)
- annulation (1)
Institute
We report the direct imidization of naphthalene and perylene dicarboxylic anhydrides/esters with bulky ortho,ortho‐diaryl‐ and ortho,ortho‐dialkynylaniline derivatives. This imidization method uses n‐butyllithium as a strong base to increase the reactivity of bulky amine derivatives, proceeds under mild reaction conditions, requires only stoichiometric amounts of reactants and gives straightforward access to new sterically crowded rylene dicarboximides. Mechanistic investigations suggest an isoimide as intermediary product, which was converted to the corresponding imide upon addition of an aqueous base. Single‐crystal X‐ray diffraction analyses reveal dimeric packing motifs for monoimides, while two‐side shielded bisimides crystallize in isolated molecules without close π–π‐interactions. Spectroscopic investigations disclose the influence of the bulky substituents on the optical properties in the solid state.
Utilizing Pd‐catalyzed [5+2] annulation a series of heptagon‐extended corannulenes could be synthesized from a borinic acid precursor furnished by C−H borylation strategy. Single‐crystal X‐ray analysis revealed the presence of two conformational enantiomers crystallizing in a racemic mixture. Through their embedded five‐ and seven‐membered rings these polycyclic aromatic hydrocarbons (PAHs) exhibit both negative and positive curvature and UV/Vis/NIR absorption spectroscopy as well as cyclic voltammetry experiments provided insights into the influence of larger flanking aromatic systems and electron‐donating substituents encompassing the heptagonal ring. Through [5+2] annulation of acenaphthylene an azulene‐containing PAH with intriguing optoelectronical properties including a very small bandgap and absorption over the whole visible spectrum could be obtained. Theoretical calculations were employed to elucidate the long‐wavelength absorption and aromaticity.
Macrocyclic Donor‐Acceptor Dyads Composed of Oligothiophene Half‐Cycles and Perylene Bisimides
(2022)
A series of donor‐acceptor (D−A) macrocyclic dyads consisting of an electron‐poor perylene bisimide (PBI) π‐scaffold bridged with electron‐rich α‐oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl‐imide substituents has been synthesized and characterized by steady‐state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π‐scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size‐dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation.
Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor–acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.
Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional pi-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C\(_{64}\) nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed.