Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
- Master Thesis (1)
Language
- English (4)
Keywords
- Fernerkundung (2)
- Landsat (2)
- MODIS (2)
- remote sensing (2)
- Africa (1)
- Burkina Faso (1)
- Degradation (1)
- ESTARFM (1)
- ESTARFM framework (1)
- Fynbos (1)
Institute
Sonstige beteiligte Institutionen
West Africa is one of the fastest growing regions in the world with annual population growth rates of more than three percent for several countries. Since the 1950s, West Africa experienced a fivefold increase of inhabitants, from 71 to 353 million people in 2015 and it is expected that the region’s population will continue to grow to almost 800 million people by the year 2050. This strong trend has and will have serious consequences for food security since agricultural productivity is still on a comparatively low level in most countries of West Africa. In order to compensate for this low productivity, an expansion of agricultural areas is rapidly progressing. The mapping and monitoring of agricultural areas in West Africa is a difficult task even on the basis of remote sensing. The small scale extensive farming practices with a low level of agricultural inputs and mechanization make the delineation of cultivated land from other land cover and land use (LULC) types highly challenging. In addition, the frequent cloud coverage in the region considerably decreases the availability of earth observation datasets. For the accurate mapping of agricultural area in West Africa, high temporal as well as spatial resolution is necessary to delineate the small-sized fields and to obtain data from periods where different LULC types are distinguishable. However, such consistent time series are currently not available for West Africa. Thus, a spatio-temporal data fusion framework was developed in this thesis for the generation of high spatial and temporal resolution time series.
Data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) enjoyed increasing popularity during recent years but they have hardly been used for the application on larger scales. In order to make it applicable for this purpose and to increase the input data availability, especially in cloud-prone areas such as West Africa, the ESTARFM framework was developed in this thesis introducing several enhancements. An automatic filling of cloud gaps was included in the framework in order to use even partly cloud-covered Landsat images for the fusion without producing gaps on the output images. In addition, the ESTARFM algorithm was improved to automatically account for regional differences in the heterogeneity of the study region. Further improvements comprise the automation of the time series generation as well as the significant acceleration of the processing speed through parallelization. The performance of the developed ESTARFM framework was tested by fusing an 8-day NDVI time series from Landsat and MODIS data for a focus area of 98,000 km² in the border region between Burkina Faso and Ghana. The results of this test show the capability of the ESTARFM framework to accurately produce high temporal resolution time series while maintaining the spatial detail, even in such a heterogeneous and cloud-prone region.
The successfully tested framework was subsequently applied to generate consistent time series as the basis for the mapping of agricultural area in Burkina Faso for the years 2001, 2007, and 2014. In a first step, high temporal (8-day) and high spatial (30 m) resolution NDVI time series for the entire country and the three years were derived with the ESTARFM framework. More than 500 Landsat scenes and 3000 MODIS scenes were automatically processed for this purpose. From the fused ESTARFM NDVI time series, phenological metrics were extracted and together with the single time steps of NDVI served as input for the delineation of rainfed agricultural areas, irrigated agricultural areas and plantations. The classification was conducted with the random forest algorithm at a 30 m spatial resolution for entire Burkina Faso and the three years 2001, 2007, and 2014. For the training and validation of the classifier, a randomly sampled reference dataset was generated from Google Earth images based on expert knowledge of the region. The overall classification accuracies of 92% (2001), 91% (2007), and 91% (2014) indicate the well-functioning of the developed methodology. The resulting maps show an expansion of agricultural area of 91% from about 61,000 km² in 2001 to 116,900 km² in 2014. While rainfed agricultural areas account for the major part of this increase, irrigated areas and plantations also spread considerably. Especially the expansion of irrigation systems and plantation area can be explained by the promotion through various national and international development projects. The increase of agricultural areas goes in line with the rapid population growth in most of Burkina Faso’s provinces which still had available land resources for an expansion of agricultural area. An analysis of the development of agricultural areas in the vicinity of protected areas highlighted the increased human pressure on these reserves. The protection of the remnant habitats for flora and fauna while at the same time improving food security for a rapidly growing population, are the major challenges for the region in the future.
The developed ESTARFM framework showed great potential beyond its utilization for the mapping of agricultural area. Other large-scale research that requires a sufficiently high temporal and spatial resolution such as the monitoring of land degradation or the investigation of land surface phenology could greatly benefit from the application of this framework.
Increasing urbanisation is one of the biggest pressures to vegetation in the City of Cape Town. The growth of the city dramatically reduced the area under indigenous Fynbos vegetation, which remains in isolated fragments. These are subject to a number of threats including atmospheric deposition, atypical fire cycles and invasion by exotic plant and animal species. Especially the Port Jackson willow (Acacia saligna) extensively suppresses the indigenous Fynbos vegetation with its rapid growth.
The main objective of this study was to investigate indicators for a quick and early prediction of the health of the remaining Fynbos fragments in the City of Cape Town with help of remote sensing.
First, the productivity of the vegetation in response to rainfall was determined. For this purpose, the Enhanced Vegetation Index (EVI), derived from Terra MODIS data with a spatial resolution of 250m, and precipitation data of 19 rainfall stations for the period from 2000 till 2008 were used. Within the scope of a flexible regression between the EVI data and the precipitation data, different lags of the vegetation response to rainfall were analysed. Furthermore, residual trends (RESTREND) were calculated, which result from the difference between observed EVI and the one predicted by precipitation. Negative trends may suggest a degradation of the habitats. In addition, the so-called Rain-use Efficiency (RUE) was tested in this context. It is defined as the ratio between net primary production (NPP) – represented by the annual sum of EVI – and the annual rainfall sum. These indicators were analysed for their suitability to determine the health of the indigenous Fynbos vegetation.
Furthermore, the degree of dispersal of invasive species especially the Acacia saligna was investigated. With the specific characteristics of the tested indicators and the spectral signature of Acacia saligna, i.e. its unique reflectance over the course of the year, the dispersal was estimated. Since the growth of invasive species dramatically reduces the biodiversity of the fragments, their presence is an important factor for the condition of ecosystem health.
This work focused on 11 test sites with an average size of 200ha, distributed over the whole area of the City of Cape Town. Five of these fragments are under conservation and the others shall be protected in the near future, too, which makes them of special interest. In January 2010, fieldwork was undertaken in order to investigate the state and composition of the local vegetation.
The results show promising indicators for the assessment of ecosystem health. The coefficients of determination of the EVI-rainfall regression for Fynbos are minor, because the reaction of this vegetation type to rainfall is considerably lower than the one of the invasive species. Thus, a good distinction between indigenous and alien vegetation is possible on the basis of this regression. On the other hand, the RESTREND method, for which the regression forms the basis, is only of limited use, since the significance of these trends is not given for Fynbos vegetation. Furthermore, the RUE has considerable potential for the assessment of ecosystem health in the study area. The Port Jackson willow has an explicitly higher EVI than the Fynbos vegetation and thus its RUE is more efficient for a similar amount of rainfall. However, it has to be used with caution, because local and temporal variability cannot be extinguished in the study area over the rather short MODIS time series.
These results display that the interpretation of the indicators has to be conducted differently from the literature, because the element of invasive species was not considered in most of the previous papers. An increase in productivity is not necessarily equivalent with an improvement in health of the fragment, but can indicate a dispersal of Acacia saligna. This shows the general problem of the term ‘degradation’ which in most publications so far is only measured by productivity and other factors like invasive species are disregarded.
On the basis of the EVI-rainfall regression and statistical measures of the EVI, the distribution of invasive species could be delineated. Generally, a strong invasion of the Port Jackson willow was discovered on the test sites. The results display that a reasoned and sustainable management of the fragments is essential in order to prevent the suppression of the indigenous Fynbos vegetation by Acacia saligna. For this purpose, remote sensing can give an indication which areas changed so that specific field surveys can be undertaken and subsequent management measures can be determined.
Burkina Faso ranges amongst the fastest growing countries in the world with an annual population growth rate of more than three percent. This trend has consequences for food security since agricultural productivity is still on a comparatively low level in Burkina Faso. In order to compensate for the low productivity, the agricultural areas are expanding quickly. The mapping and monitoring of this expansion is difficult, even on the basis of remote sensing imagery, since the extensive farming practices and frequent cloud coverage in the area make the delineation of cultivated land from other land cover and land use types a challenging task. However, as the rapidly increasing population could have considerable effects on the natural resources and on the regional development of the country, methods for improved mapping of LULCC (land use and land cover change) are needed. For this study, we applied the newly developed ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) framework to generate high temporal (8-day) and high spatial (30 m) resolution NDVI time series for all of Burkina Faso for the years 2001, 2007, and 2014. For this purpose, more than 500 Landsat scenes and 3000 MODIS scenes were processed with this automated framework. The generated ESTARFM NDVI time series enabled extraction of per-pixel phenological features that all together served as input for the delineation of agricultural areas via random forest classification at 30 m spatial resolution for entire Burkina Faso and the three years. For training and validation, a randomly sampled reference dataset was generated from Google Earth images and based on expert knowledge. The overall accuracies of 92% (2001), 91% (2007), and 91% (2014) indicate the well-functioning of the applied methodology. The results show an expansion of agricultural area of 91% between 2001 and 2014 to a total of 116,900 km\(^2\). While rainfed agricultural areas account for the major part of this trend, irrigated areas and plantations also increased considerably, primarily promoted by specific development projects. This expansion goes in line with the rapid population growth in most provinces of Burkina Faso where land was still available for an expansion of agricultural area. The analysis of agricultural encroachment into protected areas and their surroundings highlights the increased human pressure on these areas and the challenges of environmental protection for the future.
Monitoring the spatio-temporal development of vegetation is a challenging task in heterogeneous and cloud-prone landscapes. No single satellite sensor has thus far been able to provide consistent time series of high temporal and spatial resolution for such areas. In order to overcome this problem, data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) have been established and frequently used in recent years to generate high-resolution time series. In order to make it applicable to larger scales and to increase the input data availability especially in cloud-prone areas, an ESTARFM framework was developed in this study introducing several enhancements. An automatic filling of cloud gaps was included in the framework to make best use of available, even partly cloud-covered Landsat images. Furthermore, the ESTARFM algorithm was enhanced to automatically account for regional differences in the heterogeneity of the study area. The generation of time series was automated and the processing speed was accelerated significantly by parallelization. To test the performance of the developed ESTARFM framework, MODIS and Landsat-8 data were fused for generating an 8-day NDVI time series for a study area of approximately 98,000 km\(^{2}\) in West Africa. The results show that the ESTARFM framework can accurately produce high temporal resolution time series (average MAE (mean absolute error) of 0.02 for the dry season and 0.05 for the vegetative season) while keeping the spatial detail in such a heterogeneous, cloud-prone region. The developments introduced within the ESTARFM framework establish the basis for large-scale research on various geoscientific questions related to land degradation, changes in land surface phenology or agriculture