Refine
Has Fulltext
- yes (8)
Is part of the Bibliography
- yes (8)
Document Type
- Journal article (8)
Language
- English (8)
Keywords
- topological insulators (2)
- Coulomb interaction (1)
- Josephson effect (1)
- Josephson junctions (1)
- Physik (1)
- branched flow (1)
- charge (1)
- condensed matter physics (1)
- conductive hybrid (1)
- current-current correlation (1)
Institute
We have observed thermal gating, i.e. electrostatic gating induced by hot electrons. The effect occurs in a device consisting of two capacitively coupled quantum dots. The double dot system is coupled to a hot electron reservoir on one side (QD1), while the conductance of the second dot (QD2) is monitored. When a bias across QD2 is applied we observe a current which is strongly dependent on the temperature of the heat reservoir. This current can be either enhanced or suppressed, depending on the relative energetic alignment of the QD levels. Thus, the system can be used to control a charge current by hot electrons.
We have experimentally studied the diffusion thermopower of a serial double quantum dot, defined electrostatically in a GaAs/AlGaAs heterostructure. We present the thermopower stability diagram for a temperature difference 1T = (20±10)mK across the device and find a maximum thermovoltage signal of several μV in the vicinity of the triple points. Along a constant energy axis in this regime, the data show a characteristic pattern which is in agreement with Mott’s relation and can be well understood within a model of sequential transport.
The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.
Using k · p theory, we derive an effective four-band model describing the physics of the typical two-dimensional topological insulator (HgTe/CdTe quantum well (QW)) in the presence of an out-of-plane (in the z-direction) inversion breaking potential and an in-plane potential. We find that up to third order in perturbation theory, only the inversion breaking potential generates new elements to the four-band Hamiltonian that are off-diagonal in spin space. When this new effective Hamiltonian is folded into an effective twoband model for the conduction (electron) or valence (heavy hole) bands, two competing terms appear: (i) a Rashba spin–orbit interaction originating from inversion breaking potential in the z-direction and (ii) an in-plane Pauli term as a consequence of the in-plane potential. Spin transport in the conduction band is further analysed within the Landauer–Büttiker formalism. We find that for asymmetrically doped HgTe QWs, the behaviour of the spin-Hall conductance is dominated by the Rashba term.
The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.
The electrodynamics of topological insulators (TIs) is described by modified Maxwell’s equations, which contain additional terms that couple an electric field to a magnetization and a magnetic field to a polarization of the medium, such that the coupling coefficient is quantized in odd multiples of α/4π per surface. Here we report on the observation of this so-called topological magnetoelectric effect. We use monochromatic terahertz (THz) spectroscopy of TI structures equipped with a semitransparent gate to selectively address surface states. In high external magnetic fields, we observe a universal Faraday rotation angle equal to the fine structure constant α=e\(^{2}\)/2E\(_{0}\)hc (in SI units) when a linearly polarized THz radiation of a certain frequency passes through the two surfaces of a strained HgTe 3D TI. These experiments give insight into axion electrodynamics of TIs and may potentially be used for a metrological definition of the three basic physical constants.
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency f\(_{J}\) rather than conventional emission at f\(_{J}\). Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency f\(_{J}\)/2. The linewidths of emission lines indicate a coherence time of 0.3–4 ns for the f\(_{J}\)/2 line, much shorter than for the f\(_{J}\) line (3–4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.
We have investigated current-current correlations in a cross-shaped conductor made of graphene. The mean free path of charge carriers is on the order of the ribbon width which leads to a hybrid conductor where there is diffusive transport in the device arms while the central connection region displays near ballistic transport. Our data on auto and cross correlations deviate from the predictions of Landauer-Büttiker theory, and agreement can be obtained only by taking into account contributions from non-thermal electron distributions at the inlets to the semiballistic center, in which the partition noise becomes strongly modified. The experimental results display distinct Hanbury – Brown and Twiss (HBT) exchange correlations, the strength of which is boosted by the non-equilibrium occupation-number fluctuations internal to this hybrid conductor. Our work demonstrates that variation in electron coherence along atomically-thin, two-dimensional conductors has significant implications on their noise and cross correlation properties.