Refine
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Document Type
- Journal article (5)
Language
- English (5)
Keywords
- adrenocortical carcinoma (2)
- mitotane (2)
- paraganglioma (2)
- pheochromocytoma (2)
- ALT (1)
- ATRX (1)
- CYP2B6 (1)
- CYP2W1 (1)
- NOP10 (1)
- PPGL (1)
Institute
No studies have carried out an extensive analysis of the possible association between non-syndromic pheochromocytomas and paragangliomas (PPGLs) and other malignancies. To assess >the risk of additional malignancy in PPGL, we retrospectively evaluated 741 patients with PPGLs followed-up in twelve referral centers in Italy. Incidence of second malignant tumors was compared between this cohort and Italian patients with two subsequent malignancies. Among our patients, 95 (12.8%) developed a second malignant tumor, which were mainly prostate, colorectal and lung/bronchial cancers in males, breast cancer, differentiated thyroid cancer and melanoma in females. The standardized incidence ratio was 9.59 (95% CI 5.46–15.71) in males and 13.21 (95% CI 7.52–21.63) in females. At multivariable analysis, the risk of developing a second malignant tumor increased with age at diagnosis (HR 2.50, 95% CI 1.15–5.44, p = 0.021 for 50–59 vs. <50-year category; HR 3.46, 95% CI 1.67–7.15, p < 0.001 for >60- vs. <50-year). In patients with available genetic evaluation, a positive genetic test was inversely associated with the risk of developing a second tumor (HR 0.25, 95% CI 0.10–0.63, p = 0.003). In conclusion, PPGLs patients have higher incidence of additional malignant tumors compared to the general population who had a first malignancy, which could have an impact on the surveillance strategy.
One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
A relevant issue on the treatment of adrenocortical carcinoma (ACC) concerns the optimal duration of adjuvant mitotane treatment. We tried to address this question, assessing whether a correlation exists between the duration of adjuvant mitotane treatment and recurrence-free survival (RFS) of patients with ACC. We conducted a multicenter retrospective analysis on 154 ACC patients treated for ≥12 months with adjuvant mitotane after radical surgery and who were free of disease at the mitotane stop. During a median follow-up of 38 months, 19 patients (12.3%) experienced recurrence. We calculated the RFS after mitotane (RFSAM), from the landmark time-point of mitotane discontinuation, to overcome immortal time bias. We found a wide variability in the duration of adjuvant mitotane treatment among different centers and also among patients cared for at the same center, reflecting heterogeneous practice. We did not find any survival advantage in patients treated for longer than 24 months. Moreover, the relationship between treatment duration and the frequency of ACC recurrence was not linear after stratifying our patients in tertiles of length of adjuvant treatment. In conclusion, the present findings do not support the concept that extending adjuvant mitotane treatment over two years is beneficial for ACC patients with low to moderate risk of recurrence.
Mitotane is the only approved drug for advanced adrenocortical carcinoma (ACC) and no biomarkers are available to predict attainment of therapeutic plasma concentrations and clinical response. Aim of the study was to evaluate the suitability of cytochrome P450(CYP)2W1 and CYP2B6 single nucleotide polymorphisms (SNPs) as biomarkers. A multicenter cohort study including 182 ACC patients (F/M = 121/61) treated with mitotane monotherapy after radical resection (group A, n = 103) or in not completely resectable, recurrent or advanced disease (group B, n = 79) was performed. CYP2W1*2, CYP2W1*6, CYP2B6*6 and CYP2B6 rs4803419 were genotyped in germline DNA. Mitotane blood levels were measured regularly. Response to therapy was evaluated as time to progression (TTP) and disease control rate (DCR). Among investigated SNPs, CYP2W1*6 and CYP2B6*6 correlated with mitotane treatment only in group B. Patients with CYP2W1*6 (n = 21) achieved less frequently therapeutic mitotane levels (>14 mg/L) than those with wild type (WT) allele (76.2% vs 51.7%, p = 0.051) and experienced shorter TTP (HR = 2.10, p = 0.019) and lower DCR (chi-square = 6.948, p = 0.008). By contrast, 55% of patients with CYP2B6*6 vs. 28.2% WT (p = 0.016) achieved therapeutic range. Combined, a higher rate of patients with CYP2W1*6WT+CYP2B6*6 (60.6%) achieved mitotane therapeutic range (p = 0.034). In not completely resectable, recurrent or advanced ACC, CYP2W1*6 SNP was associated with a reduced probability to reach mitotane therapeutic range and lower response rates, whereas CYP2B6*6 correlated with higher mitotane levels. The association of these SNPs may predict individual response to mitotane.
The SF-1 transcription factor target gene FATE1 encodes a cancer-testis antigen that has an important role in regulating apoptosis and response to chemotherapy in adrenocortical carcinoma (ACC) cells. Autoantibodies directed against FATE1 were previously detected in patients with hepatocellular carcinoma. In this study, we investigated the prevalence of circulating anti-FATE1 antibodies in pediatric and adult patients with adrenocortical tumors using three different methods (immunofluorescence, ELISA and Western blot). Our results show that a pervasive anti-FATE1 immune response is present in those patients. Furthermore, FATE1 expression is a robust prognostic indicator in adult patients with ACC and is associated with increased steroidogenic and decreased immune response gene expression. These data can open perspectives for novel strategies in ACC immunotherapy.