Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Language
- English (4)
Keywords
- N-heterocyclic carbene (2)
- boron (2)
- cyanoborate (2)
- imidazolate (2)
- N ligands (1)
- acid sphingomyelinase (1)
- amination (1)
- anionic carbene (1)
- anioniccarbene (1)
- antidepressants (1)
Institute
Fluorinated groups are essential for drug design, agrochemicals, and materials science. The bis(trifluoromethyl)amino group is an example of a stable group that has a high potential. While the number of molecules containing perfluoroalkyl, perfluoroalkoxy, and other fluorinated groups is steadily increasing, examples with the N(CF\(_{3}\))\(_{2}\) group are rare. One reason is that transfer reagents are scarce and metal-based storable reagents are unknown. Herein, a set of Cu\(^{I}\) and Ag\(^{I}\) bis(trifluoromethyl)amido complexes stabilized by N- and P-donor ligands with unprecedented stability are presented. The complexes are stable solids that can even be manipulated in air for a short time. They are bis(trifluoromethyl)amination reagents as shown by nucleophilic substitution and Sandmeyer reactions. In addition to a series of benzylbis(trifluoromethyl)amines, 2-bis(trifluoromethyl)amino acetate was obtained, which, upon hydrolysis, gives the fluorinated amino acid N,N-bis(trifluoromethyl)glycine.
The 1,3-bis(tricyanoborane)imidazolate anion 1 was obtained in high yield from lithium imidazolate and B(CN)\(_3\)−pyridine adduct. Anion 1 is chemically very robust and thus allowed the isolation of the corresponding H\(_5\)O\(_2\)\(^+\) salt. Furthermore, monoanion 1 served as starting species for the novel dianionic N-heterocyclic carbene (NHC), 1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion 3 that acts as ditopic ligand via the carbene center and the cyano groups at boron. First reactions of this new NHC 3 with methyl iodide, elemental selenium, and [Ni(CO)\(_4\)] led to the methylated imidazolate ion 4, the dianionic selenium adduct 5, and the dianionic nickel tricarbonyl complex 6. These NHC derivatives provide a first insight into the electronic and steric properties of the dianionic NHC 3. Especially the combination of properties, such as double negative charge, different coordination sites, large buried volume and good σ-donor and π-acceptor ability, make NHC 3 a unique and promising ligand and building block.
The 1‐methyl‐3‐(tricyanoborane)imidazolin‐2‐ylidenate anion (2) was obtained in high yield by deprotonation of the B(CN)3‐methylimidazole adduct 1. Regarding charge and stereo‐electronic properties, anion 2 closes the gap between well‐known neutral NHCs and the ditopic dianionic NHC, the 1,3‐bis(tricyanoborane)imidazolin‐2‐ylidenate dianion (IIb). The influence of the number of N‐bonded tricyanoborane moieties on the σ‐donating and π‐accepting properties of NHCs was assessed by quantum chemical calculations and verified by experimental data on 2, IIb, and 1,3‐dimethylimidazolin‐2‐ylidene (IMe, IIa). Therefore NHC 2, which acts as a ditopic ligand via the carbene center and the cyano groups, was reacted with alkyl iodides, selenium, and [Ni(CO)\(_{4}\)] yielding alkylated imidazoles 3 and 4, the anionic selenium adduct 5, and the anionic nickel tricarbonyl complex 8, respectively. The results of this study prove that charge, number of coordination sites, buried volume (%V\(_{bur}\)) and σ‐donor and π‐acceptor abilities of NHCs can be effectively fine‐tuned via the number of tricyanoborane substituents.