Refine
Has Fulltext
- yes (82)
Is part of the Bibliography
- yes (82)
Year of publication
Document Type
- Journal article (69)
- Book article / Book chapter (6)
- Conference Proceeding (5)
- Review (2)
Keywords
- Toxikologie (68)
- DNA (7)
- Carcinogen (5)
- DNA binding (5)
- Genotoxicity (5)
- Carcinogenesis (3)
- Carcinogens (3)
- Ernährung (3)
- Medizin (3)
- Aflatoxin (2)
Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type), and 0.113 for CYP2C9*3 (19 % of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19% would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation >= 20% and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40% off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.
The structure of monensin, C36H620 11 , has been deterrnined by X-ray analysis of its crystalline monohydrate (orthorhombic, a = 15.15, b = 23.61, c = 10.65 A, Z = 4, space group P212121). Phases were assigned by direct methods, malring use of the 'tangent formula'. Although the conformation of the free acid resembles that of the silver salt in being cyclic, there are differences in the hydrogen bonding pattern. These featurcs are discussed in relation to the cornplexation of metal ions by m.onensin.
It is shown by means of IR. spectroscopic methodsthat nigericin and monensin bave a cyclic conformation similar to that of their silver salts. Camplex fonnation constants with sodium and potassium ions follow the selectivity order determined by EMF. measurements on liquid membranes: nigericin: K\(^+\) >Rb\(^+\)> Na\(^+\)> Cs\(^+\) >Li\(^+\); monensin: Na\(^+\)> K\(^+\) >Li\(^+\)> Rb\(^+\)> Cs\(^+\). Transport experiments show that nigericin and monensin facilitate the diffusion of potassium ions across model membranes, although in electrolytic transport experiments the permeability is not affected.
Young adult male Sprague-Dawley rats were given 30 \(\mu\)mol/kg body weight [\(^{14}\)C]methylamine hydrochloride and 700 \(\mu\)mol/ kg body weight sodium nilrite by oral gavage. DNA isolated from the stomach and from the first 15 cm of the smaß intestine was methylated, containing 7-methylguanine (7mG) at a level of one 7mG molecule per 5x10\8^6\) and lx10\(^7\) nucleotides, respectively. No 7mG was found fn the liver at a limit of detection of one 7mG molecule per 2xl0\(^8\) nucleotides. ln a second experiment, the excised stomachs were incubated with deoxyribonuclease before the isolation of the DNA in order to degrade DNA in the Iumen and in the uppermost lining cells. This treatment resulted in a 30% decrease in the yield of DNA and a 90% reduction in the level of 7mG formation. The results show that nitrosation of a primary alkylamine yields a precursor of an alkylating agent which has a long enough lifetime to diffuse towards and react with intracellular DNA. A correlation of DNA methylation in the stomach with the corresponding tumor formation by the methylating carcinogen N-methyi-N'-nitro-N-nitroso-guanidine was used to estimate the roJe of DNA damage resulting from endogenous nitrosation of dietary methylamine in man. It was concluded that the risk resulting from this single amine must be negligible bot that a similar evaluation of other primary amines is required before the over-aU role of primary amine nitrosation in the etiology of human gastric cancer can be assessed.
DNA was incubated in septum-closed reaction vials with [\(^{14}\)C]methylamine and nitrite. The DNA was purified, hydrolysed with hydrochloric acid, and the purines were analysed by h.p.l.c. 7-Methylguanine was detectable as a result of DN A methylation in experiments perfonned in 100 mM acetate at pH 4. Using different concentrations of amine and nitrite a first order reaction for total amine and a second order for total nilrite could be shown. A study on the pH dependence using 100 mM malonate buffer, pH 2.0-6.0, revealed a maximum rate at pH 3.5, with steep slopes above and below this pH value, in agreement with a mathematical analysis of the reaction equations. The data show that the alkylating agent fonned spontaneously by nitrosation and deamination of a primary amine has a long enough lifetime to react with DNA in vitro. Using the reactioil orders established here, an extrapolation to lower concentrations found in the stomach can now be perfonned. Future in vivo experiments on the methylation of gastro-intestinal DNA then would show to what extent DNA in a cell is protected from alkylation.
The aim of this study was to determine whether o-chlorobenzylidene malononitrile ( CS) exhibits any genotoxic activity towards Salmonella or mammalian DNA in vivo. CS was synthesized with a [\(^{14}\)C]-label at the benzylic carbon atom. It was administered i. p. at a dose level of 13 mg/kg (1 mCi/kg) to young adult male rats. Liverand kidney DNA was isolated after 8, 25, and 75 h. The radioactivity was at (liver, 8 and 75 h) or below (all other samples) the limit of detection of 3 dpm. Therefore, a possible binding of CS to DNA is at least 10\(^5\) times lower than that of the strong hepatocarcinogen aflatoxin B1, and 4,000 times lower than that of vinyl chloride. In contrast to this lack of DNA binding, but in agreement with the chemical reactivity of CS, a binding to nuclear proteins could be detected with specific activities ranging between 50 and 121 dpm/mg for liver and between 3 and 41 dpm/mg for kidney. Protein binding could well be responsible for its pronounced cytotoxic effects. Cs was also tested in the Ames Salmonella/microsome assay. Strains TA 1535, TA 1537, TA 1538, TA 98, and TA 100 were used with or without pre-incubation. Only with strain TA 100 and only without pre-incubation, a doubling of the number of revertants was detectable at the highest dose Ievels used, 1,000 and 2,000 !lg CS per plate. With pre-incubation of TA 100 with CS, a slight increase of the number of revertants was seen at 100 and 500 !lg per plate, and a subsequent fall below control values at 1,000 J.tg. A check for the number of surviving bacteria revealed a strong bacteriotoxicity of the higher doses of es so that the calculated mutation frequencies, i.e., the oumber of revertants per number of surviving bacteria, increased with doses up to 500 !J.g. This toxicity could be counteracted in part by the addition of increasing amounts of rat liver microsomes. In the view of these results, and taking into account the rare and low exposure of man, it is concluded that CS will not create a risk for the induction of point mutations or of carcinogenic processes mediated by DNA binding.
Lack of covalent binding to rat liver DNA of the hypolipidemic drugs clofibrate and fenofibrate
(1981)
\(^{14}\)C-Labelled clofibric acid and fenofibric acid were administered p.o. to 200 g male and female rats. After 10 h, liver nuclear DNA and protein were isolated and the radioactivity was determined. Binding to protein was clearly measurable whereas no binding to DNA could be detected from any drug. A comparison of the Iimit of detection of such DNA binding with well-known chemical carcinogens revealed that the known hepatocarcinogenicity of clofibrate cannot be based upon an initiating, DNA damaging, mode of action but must be due to other, nongenotoxic, mechanisms such as peroxisome proliferation, hepatomegaly, or cytotoxicity due to protein binding. The risk assessment in man and the interpretation of the carcinogenicity data for rodents are discussed.
[\(^{14}\)C] Aflatoxin B\(_1\) (AFB\(_1\)) was isolated from cultures of Aspergillus parasiticus grown on [1-\(^{114}\)C] sodium acetate. Covalent binding of AFB1 to liver DNA of rat and mouse was determined 6-8 h afteroral administration. The effectiveness of covalent binding, expressedas DNA binding per dose in the units of a 'Covalent Binding Index' (CBI), (\(\mu\)mol aflatoxin/mol DNA nucleotides)/(mmol aflatoxin/kg animal), was found to be 10 400 for rats and 240 for mice. These CBI partly explain the different susceptibility of the two species for the incidence of hepatic tumors. The corresponding values for pig liver DN A, 24 and 48 h after oral administration, were found to be as high as 19 100 and 13 300. DNA-binding has not so far been reported for this species although it could represent an appropriate animal model for studies where a human-like gastrointestinal tract physiology is desirable. Aflatoxin M \(_1\) ( AFM\(_1\)) is a metabolite found in the milk of cows that have been fed AFB\(_1\)-contaminated diet. [\(^{14}\)C] AFM\(_1\) was also found to be produced by cultures of A. parasiticus giving a yield of about 0.3% of the total aflatoxins. A test for covalent binding to rat liver DN A revealed a CBI of 2100 shoWing that AFM\(_1\) must also be regarded as a strong hepatocarcinogen. It is concluded that AFB\(_1\) contaminations should be avoided in dairy feed.