Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (3)
Language
- English (3)
Keywords
- Cardiovascular biology (1)
- Elite Rowers (1)
- Lower Reference Value (1)
- Reservoir Strain (1)
- Risk factors (1)
- Rowing Ergometer (1)
- Strain Assessment (1)
- accelerometer (1)
- elite (1)
- endurance training (1)
Institute
Speckle tracking-derived bi-atrial strain before and after eleven weeks of training in elite rowers
(2018)
The left (LA) and right (RA) atria undergo adaptive remodeling in response to hemodynamic stress not only induced by endurance exercise but also as part of several cardiovascular diseases thereby confounding differential diagnosis. Echocardiographic assessment of the atria with novel speckle tracking (STE)-derived variables broadens the diagnostic spectrum compared to conventional analyses and has the potential to differentiate physiologic from pathologic changes. The purpose of this study was to assess and categorize baseline values of bi-atrial structure and function in elite rowers according to recommended cutoffs, and to assess the cardiac changes occurring with endurance training. Therefore, fifteen elite rowers underwent 2D-echocardiographic analysis of established variables of cardiac structure and function as well as STE-derived variables of bi-atrial function. Measurements were performed at baseline and after eleven weeks of extensive training. 40% of athletes displayed mildly enlarged LA and 47% mildly enlarged RA at baseline, whereas no athlete fell below the lower reference values of LA and RA reservoir strain. Average power during a 2000 m ergometer rowing test (P2000 m) improved from 426 +/- 39 W to 442 +/- 34 W (p = 0.010) but there were no changes of echocardiographic variables following training. In elite rowers, longitudinal bi-atrial strain assessment indicates normal resting function of structurally enlarged atria and thereby may assist to differentiate between exercise-induced versus disease-associated structural cardiac changes in which function is commonly impaired.
The aim of this pilot study was to analyze the off-training physical activity (PA) profile in national elite German U23 rowers during 31 days of their preparation period. The hours spent in each PA category (i.e., sedentary: <1.5 metabolic equivalents (MET); light physical activity: 1.5–3 MET; moderate physical activity: 3–6 MET and vigorous intense physical activity: >6 MET) were calculated for every valid day (i.e., >480 min of wear time). The off-training PA during 21 weekdays and 10 weekend days of the final 11-week preparation period was assessed by the wrist-worn multisensory device Microsoft Band II (MSBII). A total of 11 rowers provided valid data (i.e., >480 min/day) for 11.6 week days and 4.8 weekend days during the 31 days observation period. The average sedentary time was 11.63 ± 1.25 h per day during the week and 12.49 ± 1.10 h per day on the weekend, with a tendency to be higher on the weekend compared to weekdays (p = 0.06; d = 0.73). The average time in light, moderate and vigorous PA during the weekdays was 1.27 ± 1.15, 0.76 ± 0.37, 0.51 ± 0.44 h per day, and 0.67 ± 0.43, 0.59 ± 0.37, 0.53 ± 0.32 h per weekend day. Light physical activity was higher during weekdays compared to the weekend (p = 0.04; d = 0.69). Based on our pilot study of 11 national elite rowers we conclude that rowers display a considerable sedentary off-training behavior of more than 11.5 h/day.
The training intensity distribution (TID) of endurance athletes has retrieved substantial scientific interest since it reflects a vital component of training prescription: (i) the intensity of exercise and its distribution over time are essential components for adaptation to endurance training and (ii) the training volume (at least for most endurance disciplines) is already near or at maximum, so optimization of training procedures including TID have become paramount for success. This paper aims to elaborate the polarization-index (PI) which is calculated as log10(Zone 1/Zone 2∗Zone 3∗100), where Zones 1–3 refer to aggregated volume (time or distance) spent with low, mid, or high intensity training. PI allows to distinguish between non-polarized and polarized TID using a cut-off > 2.00 a.U. and to quantify the level of a polarized TID. Within this hypothesis paper, examples from the literature illustrating the usefulness of PI-calculation are discussed as well as its limitations. Further it is elucidated how the PI may contribute to a more precise definition of TID descriptors.