Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (3)
- Doctoral Thesis (1)
Keywords
- 5-HT1A (3)
- 5-HT2C (3)
- NPY (3)
- Coexpression (2)
- triple in situ hybridization (2)
- Amygdala (1)
- Angst (1)
- Anxiety (1)
- Corpus amygdaloideum (1)
- Neuropeptid Y (1)
Die Amygdala ist ein Kernkomplex, der dicht von serotonergen Afferenzen innerviert wird. Sowohl bei Tieren als auch beim Menschen spielen Interaktionen zwischen dem serotonergen System und der Amygdala bei der Verarbeitung von Reizen, die mit Angst oder Stress assoziiert sind, eine zentrale Rolle. Genetische Variationen im serotonergen System und/oder dauerhafter Stress können dazu führen, dass diese Verarbeitungsprozesse fehlerhaft ablaufen, wodurch Verhaltensanormalitäten bzw. die Entstehung psychiatrischer Erkrankungen begünstigt werden. Die Zielneurone der serotonergen Transmission in der Amygdala, die molekularen Mechanismen möglicher Interaktionen und strukturelle Konsequenzen der Störungen dieser Interaktionen sind jedoch bis zum heutigen Zeitpunkt noch nicht vollständig bekannt. Daher bestand ein Ziel der vorliegenden Arbeit darin, den Einfluss eines Ungleichgewichts im serotonergen System (5-Htt KO) sowie von wiederholtem, sozialem Stress auf die neuronale Morphologie der Amygdala zu analysieren und Zielneurone serotonerger Afferenzen zu identifizieren und zu charakterisieren, um die neuronalen Netzwerke der Emotionsverarbeitung besser verstehen zu können. Um vom 5-Htt–Genotyp abhängige und stressbedingte neuromorphologische Veränderungen zu untersuchen, wurden dreidimensionale Rekonstruktionen von Neuronen der laterobasalen Amygdala von männlichen, adulten Wildtyp (WT)- und 5-Htt KO-Mäusen angefertigt und bezüglich verschiedener morphologischer Parameter ausgewertet. An den Pyramidenzellen wurden nur geringfügige Veränderungen der dendritischen Komplexität, jedoch, im Vergleich zu WT-Mäusen, eine wesentliche Erhöhung der Dornendichte an spezifischen dendritischen Kompartimenten bei gestressten WT-Mäusen, sowie nicht gestressten und gestressten 5-Htt KO-Mäusen nachgewiesen. Im Vergleich zu nicht gestressten WT–Mäusen war die dendritische Dornendichte aller anderen Gruppen gleichermaßen erhöht. Die Sternzelle, zeigten bezüglich der untersuchten Parameter keine morphologischen Veränderungen auf. Eine besondere Subpopulation der Interneurone stellen die NeuropeptidY (NPY)–Neurone der laterobasalen Amygdala dar, da sie in diesen Nuclei anxiolytisch wirken. Es gibt nur wenige Anhaltspunkte darüber, durch welche Systeme NPY–Neurone moduliert werden. Da sowohl NPY–Neurone in der laterobasalen Amygdala als auch das serotonerge System an angstregulierenden Prozessen beteiligt sind, sollte im zweiten Teil der vorliegenden Arbeit untersucht werden, ob es sich bei diesen Neuronen um Zielstrukturen des serotonergen Systems handelt. Mittels licht- und elektronenmikroskopischer Analysen wurden synaptische Kontakte zwischen serotonergen Afferenzen und NPY-immunreaktiven Neuronen in der laterobasalen Amygdala von Ratten verifiziert. Da der funktionelle Einfluss der serotonergen Innervation auf diese Zielneurone von deren Serotoninrezeptor (5-HTR)-Ausstattung abhängt, wurden Koexpressionsanalysen von NPY mRNA mit den mRNAs verschiedener 5-HTR durchgeführt. Die Analysen ergaben, dass NPY mRNA–reaktive Neurone in der laterobasalen Amygdala 5-HT1A und 5-HT2C, jedoch nicht 5-HT3 mRNA koexprimieren. Die in der vorliegenden Arbeit erzielten Resultate liefern neue Erkenntnisse über den Einfluss des serotonergen Systems auf die laterobasale Amygdala von Mäusen und Ratten. Bei den Veränderungen der dendritischen Dornendichte nach sozialen Stresserfahrungen könnte es sich um neuroadaptive bzw. kompensatorische Mechanismen der Pyramidenzellen handeln, die WT-Mäusen eine Anpassung an sich ändernde, negative Umweltbedingungen ermöglicht. Die erhöhte Dornendichte könnte dabei die Ausbildung eines „emotionalen Gedächtnisses“ repräsentieren, das eine flexible Verhaltensantwort auf ein erneutes Auftauchen von Gefahr erlaubt. Eine solche Modulation der Erregbarkeit der laterobasalen Amygdala könnte beispielsweise über eine situationsentsprechende Hemmung des Outputs der Pyramidenzellen durch differentiell aktive inhibitorische Netzwerke erfolgen. Eine differentielle Aktivierung kann z. B. über unterschiedliche Rezeptorausstattungen, wie es in der Subpopulation der NPY–Neurone in der vorliegenden Arbeit nachgewiesen wurde, erfolgen. Das erhöhte angstähnliche Verhalten der 5-Htt KO-Mäuse nach wiederholtem Stress könnte mit der Unfähigkeit zusammenhängen, in entsprechenden Situationen durch Neubildung von Dornen zu reagieren, da die Dornendichte bei diesen Tieren schon unter stressarmen Umweltbedingungen ihr Maximum erreicht hat. Sowohl Fehlfunktionen der neuronalen Plastizität als auch mögliche Fehlfunktionen der differentiellen Inhibierung der Pyramidenzellen durch Interneurone, die durch genetische Variationen und/oder Stress bedingt sein können, könnten eine „offene Tür“ repräsentieren, die zu manifesten Auffälligkeiten im Verhalten bei Tieren führt bzw. auch zur Entstehung bestimmter psychiatrischer Erkrankungen beim Menschen beiträgt.
Multiple fluorescence in situ hybridization is the method of choice for studies aimed at determining simultaneous production of signal transduction molecules and neuromodulators in neurons. In our analyses of the monoamine receptor mRNA expression of peptidergic neurons in the rat telencephalon, double tyramide-signal-amplified fluorescence in situ hybridization delivered satisfactory results for coexpression analysis of neuropeptide Y (NPY) and serotonin receptor 2C (5-HT2C) mRNA, a receptor subtype expressed at high-to-moderate abundance in the regions analyzed. However, expression of 5-HT1A mRNA, which is expressed at comparatively low abundance in many telencephalic areas, could not be unequivocally identified in NPY mRNA-reactive neurons due to high background and poor signal-to-noise ratio in fluorescent receptor mRNA detections. Parallel chromogenic in situ hybridization provided clear labeling for 5-HT1A mRNA and additionally offered the possibility to monitor the chromogen deposition at regular time intervals to determine the optimal signal-to-noise ratio. We first developed a double labeling protocol combining fluorescence and chromogenic in situ hybridization and subsequently expanded this variation to combine double fluorescence and chromogenic in situ hybridization for triple labelings. With this method, we documented expression of 5-HT2C and/or 5-HT1A in subpopulations of telencephalic NPY-producing neurons. The method developed in the present study appears suitable for conventional light and fluorescence microscopy, combines advantages of fluorescence and chromogenic in situ hybridization protocols and thus provides a reliable non-radioactive alternative to previously published multiple labeling methods for coexpression analyses in which one mRNA species requires highly sensitive detection.
Multiple fluorescence in situ hybridization is the method of choice for studies aimed at determining simultaneous production of signal transduction molecules and neuromodulators in neurons. In our analyses of the monoamine receptor mRNA expression of peptidergic neurons in the rat telencephalon, double tyramide-signal-amplified fluorescence in situ hybridization delivered satisfactory results for coexpression analysis of neuropeptide Y (NPY) and serotonin receptor 2C (5-HT2C) mRNA, a receptor subtype expressed at high-to-moderate abundance in the regions analyzed. However, expression of 5-HT1A mRNA, which is expressed at comparatively low abundance in many telencephalic areas, could not be unequivocally identified in NPY mRNA-reactive neurons due to high background and poor signal-to-noise ratio in fluorescent receptor mRNA detections. Parallel chromogenic in situ hybridization provided clear labeling for 5-HT1A mRNA and additionally offered the possibility to monitor the chromogen deposition at regular time intervals to determine the optimal signal-to-noise ratio. We first developed a double labeling protocol combining fluorescence and chromogenic in situ hybridization and subsequently expanded this variation to combine double fluorescence and chromogenic in situ hybridization for triple labelings. With this method, we documented expression of 5-HT2C and/or 5-HT1A in subpopulations of telencephalic NPY-producing neurons. The method developed in the present study appears suitable for conventional light and fluorescence microscopy, combines advantages of fluorescence and chromogenic in situ hybridization protocols and thus provides a reliable non-radioactive alternative to previously published multiple labeling methods for coexpression analyses in which one mRNA species requires highly sensitive detection.
Multiple fluorescence in situ hybridization is the method of choice for studies aimed at determining simultaneous production of signal transduction molecules and neuromodulators in neurons. In our analyses of the monoamine receptor mRNA expression of peptidergic neurons in the rat telencephalon, double tyramide-signal-amplified fluorescence in situ hybridization delivered satisfactory results for coexpression analysis of neuropeptide Y (NPY) and serotonin receptor 2C (5-HT2C) mRNA, a receptor subtype expressed at high-to-moderate abundance in the regions analyzed. However, expression of 5-HT1A mRNA, which is expressed at comparatively low abundance in many telencephalic areas, could not be unequivocally identified in NPY mRNA-reactive neurons due to high background and poor signal-to-noise ratio in fluorescent receptor mRNA detections. Parallel chromogenic in situ hybridization provided clear labeling for 5-HT1A mRNA and additionally offered the possibility to monitor the chromogen deposition at regular time intervals to determine the optimal signal-to-noise ratio. We first developed a double labeling protocol combining fluorescence and chromogenic in situ hybridization and subsequently expanded this variation to combine double fluorescence and chromogenic in situ hybridization for triple labelings. With this method, we documented expression of 5-HT2C and/or 5-HT1A in subpopulations of telencephalic NPY-producing neurons. The method developed in the present study appears suitable for conventional light and fluorescence microscopy, combines advantages of fluorescence and chromogenic in situ hybridization protocols and thus provides a reliable non-radioactive alternative to previously published multiple labeling methods for coexpression analyses in which one mRNA species requires highly sensitive detection.