Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Journal article (6)
- Doctoral Thesis (1)
Keywords
- Medizin (2)
- B-Zelle (1)
- Barrett-Ösophagus (1)
- Diabetes mellitus (1)
- Glutamat-Decarboxylase (1)
- Herzthoraxchirurgie (1)
- Insulin (1)
- Krebs (1)
- T cell receptors (1)
- T cells (1)
Institute
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (5)
- Klinik und Poliklinik für Thorax-, Herz- u. Thorakale Gefäßchirurgie (2)
- Medizinische Klinik und Poliklinik II (2)
- Pathologisches Institut (2)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Institut für Klinische Epidemiologie und Biometrie (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Sonstige beteiligte Institutionen
Background
Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA.
Hypothesis
Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing.
Methods
To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression.
Results
Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry.
Conclusions
PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.
Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.
Background: Investigation of the expression of an intestinal stem cell marker in esophageal adenocarcinomas (EAC) with and without Barrett’s Esophagus (BE), with respect to a cancer stem cell (CSC) hypothesis. Materials and methods: Expression of a putative intestinal stem cell marker LgR5 was analyzed in esophageal cancer specimen (n = 70: 41 EAC with BE, 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC) and in the adenocarcinoma cell line OE-33. Ki-67 and Cdx-2 were co-labelled with LgR5 in double staining experiments. Immunhistochemical expression results were confirmed by RT-PCR and correlated with tumor stage and five-year survival rates. Results: LgR5was found expressed in 35 of 41 (85%) EAC with BE and in 16 of 19 (81%) EAC without BE. By contrast, LgR5 was not found to be expressed in ESCC. Quantification of immunolabeling showed 15% LgR5+ cells in EAC with BE, 32% LgR5+ cells in adjacent BE and 13% in EAC without BE. Immunofluorescence double staining experiments with LgR5 and Ki-67 revealed a subpopulation (~5%) of proliferating LgR+/Ki-67+ cells. On mRNAlevel, expression of LgR5 was higher in BE in comparison to EAC (p = 0.0159). High levels of LgR5 expression in BE associated EAC were associated with poorer survival in univariate analysis. Conclusion: The stem cell marker LgR5 is expressed in EAC, irrespective of association with BE, and appears to have negative impact on survival. The subset of proliferating LgR5+ cells (<5%) might resemble rapidly cycling CSCs, which needs to be substantiated in further investigations.
Background: Esophageal adenocarcinomas (EACs) arise due to gastroesophageal reflux, with Barrett’s esophagus (BE) regarded as precancerous lesion. Matrix metalloproteinases (MMPs) might play a role during the multistep carcinogenetic process. Methods: Expression of MMP-1 and -13 was analyzed in esophageal cancer (n = 41 EAC with BE, n = 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC), furthermore in BE without intraepithelial neoplasia (IN) (n = 18), and the cell line OE-33. MMP-1 was co-labelled with Ki-67 (proliferation), Cdx-2 (marker for intestinal metaplasia, BE) and analyzed on mRNA level. MMP-1 staining results were correlated with clinicopatholocical parameters. Results: On protein level, MMP-1 expression was found in 39 of 41 (95%) EAC with BE, in 19 of 19 (100%) EAC without BE, in 6 of 10 (60%) ESCC, and in 10 of 18 (56%) BE without IN. No expression of MMP-13 was found in these specimens. Quantification showed 48% MMP-1 positive cells in EAC with BE, compared to 35% in adjacent BE (p < 0.05), 44% in EAC without BE, 32% in ESCC, and 4% in BE without IN. Immunofluorescence double staining experiments revealed increased MMP-1 expressing in proliferating cells (MMP-1+/Ki-67+) (r = 0.943 for BE and r = 0.811 for EAC). On mRNA-level, expression of MMP-1 was significantly higher in EAC compared to BE (p = 0.01) and confirmed immunohistochemical staining results. High MMP-1 levels were associated with lymph node metastases but not with poorer survival (p = 0.307). Conclusions: Our findings suggest that MMP-1 plays a role as preinvasive factor in BE-associated EAC. Expression of MMP-1 in proliferating BE and EAC cells suggest malignant proliferation following the clonal expansion model.
Background
Investigation of the expression of an intestinal stem cell marker in esophageal adenocarcinomas (EAC) with and without Barrett's Esophagus (BE), with respect to a cancer stem cell (CSC) hypothesis.
Materials and methods
Expression of a putative intestinal stem cell marker LgR5 was analyzed in esophageal cancer specimen (n = 70: 41 EAC with BE, 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC) and in the adenocarcinoma cell line OE-33. Ki-67 and Cdx-2 were co-labelled with LgR5 in double staining experiments. Immunhistochemical expression results were confirmed by RT-PCR and correlated with tumor stage and five-year survival rates.
Results
LgR5was found expressed in 35 of 41 (85%) EAC with BE and in 16 of 19 (81%) EAC without BE. By contrast, LgR5 was not found to be expressed in ESCC. Quantification of immunolabeling showed 15% LgR5+ cells in EAC with BE, 32% LgR5+ cells in adjacent BE and 13% in EAC without BE. Immunofluorescence double staining experiments with LgR5 and Ki-67 revealed a subpopulation (~5%) of proliferating LgR+/Ki-67+ cells. On mRNA-level, expression of LgR5 was higher in BE in comparison to EAC (p = 0.0159). High levels of LgR5 expression in BE associated EAC were associated with poorer survival in univariate analysis.
Conclusion
The stem cell marker LgR5 is expressed in EAC, irrespective of association with BE, and appears to have negative impact on survival. The subset of proliferating LgR5+ cells (<5%) might resemble rapidly cycling CSCs, which needs to be substantiated in further investigations.
Im Rahmen der vorliegenden Arbeit sollte geprüft werden ob durch Reduktion der Glutamatdecarboxylase (GAD) Expression eine Reduktion des autoimmunogenen Potenzials in insulinproduzierenden Beta-Zellen des endokrinen Pankreas erreicht werden kann. Aus der Literatur ist bekannt, dass GAD als Autoantigen eine zentrale Stellung bei der Induktion der T-Zell vermittelten Insulitis einnimmt. Der Prozess, welcher zur Beta-Zell-Apoptose des Typ 1 Diabetes führt, ist ein bislang wenig verstandener komplexer Vorgang. Ein besseres Verständnis dieses Prozesses könnte zur Prävention der Beta-Zell-Zerstörung in der frühen Phase des Typ 1 Diabetes beitragen. In den für die Untersuchungen verwendeten INS-1 Zellen werden die beiden Isoformen der GAD exprimiert. Durch einen antisense Ansatz sollte in INS-1 Zellen die GAD Expression beider Isoformen supprimiert werden. In dieser Arbeit wurden zwei Methoden zur gezielten Suppression der Expression des Autoantigens GAD65 etabliert. Es konnte ein antisense Klon identifiziert werden, bei dem die endogene GAD65 mRNA fast nicht mehr detektierbar war. Auf Protein Ebene, im Westernblot konnte dieses Ergebnis jedoch nicht bestätigt werden. Im zweiten Teil der Arbeit wurde die Funktion der INS-1 Zellen mit supprimierter GAD65 Expression charakterisiert. Dieser Punkt beinhaltet die Analyse der Expression von Genen, welche die Beta-Zell-Funktion definieren, die Glukose-abhängige Insulinsekretion sowie die Regulation der Zytokin-induzierten Apoptose. Dabei zeigte sich aus Daten der RT-PCR, dass die mRNAs von anderen Beta-Zell-spezifischen Genen wie GLUT2, Glukokinase, Proinsulin, IDX1 und Nkx6.1 in unveränderter Menge nachweisbar sind. Also bleibt die Funktion der INS-1 Beta-Zellen erhalten, da selbst durch forcierte Reduktion der Expression des Autoantigens GAD65 die Glukose-induzierte Insulinsekretionskapazität im Wesentlichen nicht beeinträchtigt wird. In vitro Untersuchungen zeigten eine unveränderte Sensitivität der Zytokin-induzierten Apoptose nach GAD65 Suppression in INS-1 Zellen. Die zuvor genannten Resultate und die Tatsache, dass die GAD wohl eines der wichtigsten Autoantigene im Rahmen der Immunpathogenese des Typ 1 Diabetes ist, stellen die Grundlage für die Generierung GAD-supprimierter transplantierbarer Beta-Zellen mit guter Transplantatfunktion dar. Im Hinblick auf eine mögliche therapeutische Anwendung bei der Behandlung dieser humanen Autoimmunerkrankung demonstrieren die vorliegenden Daten, dass im Rahmen einer Inselzelltransplantation die Verwendung von GAD-supprimierten Beta-Zellen bei der Transplantation in das endokrine Pankreas des Menschen zu einer Verminderung von Autoimmunreaktionen führen könnte.
Background
Fatty acid binding protein (FABP) is an intracellular transport protein associated with myocardial damage size in patients undergoing cardiac surgery. Furthermore, elevated FABP serum concentrations are related to a number of common comorbidities, such as heart failure, chronic kidney disease, diabetes mellitus, and metabolic syndrome, which represent important risk factors for postoperative acute kidney injury (AKI). Data are lacking on the association between preoperative FABP serum level and postoperative incidence of AKI.
Methods
This prospective cohort study investigated the association between preoperative h-FABP serum concentrations and postoperative incidence of AKI, hospitalization time and length of ICU treatment. Blood samples were collected according to a predefined schedule. The AKI Network definition of AKI was used as primary endpoint. All associations were analysed using descriptive and univariate analyses.
Results
Between 05/2009 and 09/2009, 70 patients undergoing cardiac surgery were investigated. AKI was observed in 45 patients (64%). Preoperative median (IQR) h-FABP differed between the AKI group (2.9 [1.7–4.1] ng/ml) and patients without AKI (1.7 [1.1–3.3] ng/ml; p = 0.04), respectively. Patients with AKI were significantly older. No statistically significant differences were found for gender, type of surgery, operation duration, CPB-, or X-Clamp time, preoperative cardiac enzymes, HbA1c, or CRP between the two groups. Preoperative h-FABP was also correlated with the length of ICU stay (rs = 0.32, p = 0.007).
Conclusions
We found a correlation between preoperative serum h-FABP and the postoperative incidence of AKI. Our results suggest a potential role for h-FABP as a biomarker for AKI in cardiac surgery.