• Deutsch
  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen

Refine

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • yes (1)

Year of publication

  • 2020 (1)

Document Type

  • Journal article (1)

Language

  • English (1)

Keywords

  • crowdsensing (1)
  • ecological momentary assessment (1)
  • mHealth (1)
  • machine learning (1)
  • mobile operating system differences (1)
  • mobile phone (1)
  • tinnitus (1)

Author

  • Breitmayer, Marius (1)
  • Hoppenstedt, Burkhard (1)
  • Langguth, Berthold (1)
  • Probst, Thomas (1)
  • Pryss, Rüdiger (1)
  • Reichert, Manfred (1)
  • Schlee, Winfried (1)
  • Spiliopoulou, Myra (1)

Institute

  • Institut für Klinische Epidemiologie und Biometrie (1)

1 search hit

  • 1 to 1
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100
Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study (2020)
Pryss, Rüdiger ; Schlee, Winfried ; Hoppenstedt, Burkhard ; Reichert, Manfred ; Spiliopoulou, Myra ; Langguth, Berthold ; Breitmayer, Marius ; Probst, Thomas
Background: Tinnitus is often described as the phantom perception of a sound and is experienced by 5.1% to 42.7% of the population worldwide, at least once during their lifetime. The symptoms often reduce the patient's quality of life. The TrackYourTinnitus (TYT) mobile health (mHealth) crowdsensing platform was developed for two operating systems (OS)-Android and iOS-to help patients demystify the daily moment-to-moment variations of their tinnitus symptoms. In all platforms developed for more than one OS, it is important to investigate whether the crowdsensed data predicts the OS that was used in order to understand the degree to which the OS is a confounder that is necessary to consider.
  • 1 to 1

DINI-Zertifikat     OPUS4 Logo

  • Contact
  • |
  • Imprint
  • |
  • Sitemap