Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Language
- English (6)
Keywords
- Actin binding proteins (1)
- Actin-bindende Proteine (1)
- Alzheimers disease (1)
- Amyotrophic-lateral-sclerosis (1)
- Axon degeneration (1)
- Axonal transport (1)
- B7-H1 (1)
- CD147 (1)
- Cyclophilin A (1)
- Cytoskeleton (1)
Institute
EU-Project number / Contract (GA) number
- 259867 (1)
Background
Platelets are small anucleate cells that circulate in the blood in a resting state but can be activated by external cues. In case of need, platelets from blood donors can be transfused. As an alternative source, platelets can be produced from induced pluripotent stem cells (iPSCs); however, recovered numbers are low.
Objectives
To optimize megakaryocyte (MK) and platelet output from murine iPSCs, we investigated overexpression of the transcription factors GATA‐binding factor 1 (GATA1); nuclear factor, erythroid 2; and pre–B‐cell leukemia transcription factor 1 (Pbx1) and a hyperactive variant of the small guanosine triphosphatase RhoA (RhoAhc).
Methods
To avoid off‐target effects, we generated iPSCs carrying the reverse tetracycline‐responsive transactivator M2 (rtTA‐M2) in the Rosa26 locus and expressed the factors from Tet‐inducible gammaretroviral vectors. Differentiation of iPSCs was initiated by embryoid body (EB) formation. After EB dissociation, early hematopoietic progenitors were enriched and cocultivated on OP9 feeder cells with thrombopoietin and stem cell factor to induce megakaryocyte (MK) differentiation.
Results
Overexpression of GATA1 and Pbx1 increased MK output 2‐ to 2.5‐fold and allowed prolonged collection of MK. Cytologic and ultrastructural analyses identified typical MK with enlarged cells, multilobulated nuclei, granule structures, and an internal membrane system. However, GATA1 and Pbx1 expression did not improve MK maturation or platelet release, although in vitro–generated platelets were functional in spreading on fibrinogen or collagen‐related peptide.
Conclusion
We demonstrate that the use of rtTA‐M2 transgenic iPSCs transduced with Tet‐inducible retroviral vectors allowed for gene expression at later time points during differentiation. With this strategy we could identify factors that increased in vitro MK production.
Platelet activation and thrombus formation have been implicated to be detrimental for intraportal pancreatic islet transplants. The platelet‐specific collagen receptor glycoprotein VI (GPVI) plays a key role in thrombosis through cellular activation and the subsequent release of secondary mediators. In aggregometry and in a microfluidic dynamic assay system modeling flow in the portal vein, pancreatic islets promoted platelet aggregation and triggered thrombus formation, respectively. While platelet GPVI deficiency did not affect the initiation of these events, it was found to destabilize platelet aggregates and thrombi in this process. Interestingly, while no major difference was detected in early thrombus formation after intraportal islet transplantation, genetic GPVI deficiency or acute anti‐GPVI treatment led to an inferior graft survival and function in both syngeneic mouse islet transplantation and xenogeneic human islet transplantation models. These results demonstrate that platelet GPVI signaling is indispensable in stable thrombus formation induced by pancreatic islets. GPVI deficiency resulted in thrombus destabilization and inferior islet engraftment indicating that thrombus formation is necessary for a successful intraportal islet transplantation in which platelets are active modulators.
Studies on platelet cytoskeletal dynamics and receptor regulation in genetically modified mice
(2009)
Platelets are produced by bone marrow megakaryocytes in a process involving actin dynamics. Actin-depolymerizing factor (ADF) and cofilin are actin-binding proteins that act as key regulators in actin turnover by promoting filament severing and depolymerization. The overall significance of ADF/cofilin function and actin turnover in platelet formation is presently unclear. In the first part of this thesis, platelet formation and function were studied in mice constitutively lacking ADF and/or mice with a conditional deficiency (Cre/loxP) in n-cofilin. To delete cofilin exclusively in megakaryocytes and platelets, cofilinfl/fl mice were crossed with PF4 (platelet factor 4)-Cre mice. While a single-deficiency in ADF or n-cofilin resulted in no or only a minor platelet formation defect, respectively, a double-deficiency in ADF and n-cofilin led to an almost complete loss of platelets. Bone marrow megakaryocytes of ADF/n-cofilin-deficient mice showed defective platelet zone formation. Interestingly, in vitro and ex vivo megakaryocyte differentiation revealed reduced proplatelet formation and absence of platelet-forming swellings. These data establish that ADF and n-cofilin have redundant but essential roles in the terminal step of platelet formation in vitro and in vivo. In the second part of the thesis, mechanisms underlying cellular regulation of the major platelet collagen receptor, glycoprotein VI (GPVI), were studied. GPVI mediates platelet activation on exposed subendothelial collagens at sites of vascular injury, and thereby contributes to normal hemostasis but also to occlusion of diseased vessels in the setting of myocardial infarction or stroke. Thus, GPVI is an attractive target for anti-thrombotic therapy, particularly because previous studies have shown that anti-GPVI antibodies induce irreversible down-regulation of the receptor in circulating platelets by internalization and ectodomain shedding. Metalloproteinases of the ADAM (a disintegrin and metalloproteinase domain) family are suspected to mediate this ectodomain shedding, but in vivo evidence for this is lacking. To study the mechanism of GPVI regulation in vivo, two mouse lines, Gp6 knock-out and Adam10fl/fl, PF4-Cre mice, were generated and in addition low TACE (TNFalpha converting enzyme) mice were analyzed. It was shown that GPVI can be cleaved in vitro by ADAM10 or TACE depending on the shedding-inducing signaling pathway. Moreover, GPVI was down-regulated in vivo upon antibody injection in ADAM10-deficient and low TACE mice suggesting that either both or an additional metalloproteinase is involved in GPVI regulation in vivo.
The activation of immune cells by targeting checkpoint inhibitors showed promising results with increased patient survival in distinct primary cancers. Since only limited data exist for human brain metastases, we aimed at characterizing tumor infiltrating lymphocytes (TILs) and expression of immune checkpoints in the respective tumors. Two brain metastases cohorts, a mixed entity cohort (n = 252) and a breast carcinoma validation cohort (n = 96) were analyzed for CD3+, CD8+, FOXP3+, PD-1+ lymphocytes and PD-L1+ tumor cells by immunohistochemistry. Analyses for association with clinico-epidemiological and neuroradiological parameters such as patient survival or tumor size were performed. TILs infiltrated brain metastases in three different patterns (stromal, peritumoral, diffuse). While carcinomas often show a strong stromal infiltration, TILs in melanomas often diffusely infiltrate the tumors. Highest levels of CD3+ and CD8+ lymphocytes were seen in renal cell carcinomas (RCC) and strongest PD-1 levels on RCCs and melanomas. High amounts of TILs, high ratios of PD-1+/CD8+ cells and high levels of PD-L1 were negatively correlated with brain metastases size, indicating that in smaller brain metastases CD8+ immune response might get blocked. PD-L1 expression strongly correlated with TILs and FOXP3 expression. No significant association of patient survival with TILs was observed, while high levels of PD-L1 showed a strong trend towards better survival in melanoma brain metastases (Log-Rank p = 0.0537). In summary, melanomas and RCCs seem to be the most immunogenic entities. Differences in immunotherapeutic response between tumor entities regarding brain metastases might be attributable to this finding and need further investigation in larger patient cohorts.
Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling
(2016)
In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.
Cyclophilin a is not acetylated at lysine-82 and lysine-125 in resting and stimulated platelets
(2022)
Cyclophilin A (CyPA) is widely expressed by all prokaryotic and eukaryotic cells. Upon activation, CyPA can be released into the extracellular space to engage in a variety of functions, such as interaction with the CD147 receptor, that contribute to the pathogenesis of cardiovascular diseases. CyPA was recently found to undergo acetylation at K82 and K125, two lysine residues conserved in most species, and these modifications are required for secretion of CyPA in response to cell activation in vascular smooth muscle cells. Herein we addressed whether acetylation at these sites is also required for the release of CyPA from platelets based on the potential for local delivery of CyPA that may exacerbate cardiovascular disease events. Western blot analyses confirmed the presence of CyPA in human and mouse platelets. Thrombin stimulation resulted in CyPA release from platelets; however, no acetylation was observed—neither in cell lysates nor in supernatants of both untreated and activated platelets, nor after immunoprecipitation of CyPA from platelets. Shotgun proteomics detected two CyPA peptide precursors in the recombinant protein, acetylated at K28, but again, no acetylation was found in CyPA derived from resting or stimulated platelets. Our findings suggest that acetylation of CyPA is not a major protein modification in platelets and that CyPA acetylation is not required for its secretion from platelets.