Refine
Has Fulltext
- yes (13)
Is part of the Bibliography
- yes (13)
Document Type
- Journal article (13)
Language
- English (13)
Keywords
- COVID-19 (3)
- ARDS (acute respiratory distress syndrome) (1)
- Apoptosis (1)
- Aspartate Aminotransferases (1)
- COVID 19 (1)
- Computertomographie (1)
- Creatine Kinase (1)
- Electrical impedance tomography (1)
- General anaesthesia (1)
- Germany (1)
Institute
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (12)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (3)
- Medizinische Klinik und Poliklinik I (3)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (2)
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II) (2)
- Neurologische Klinik und Poliklinik (2)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (1)
- Frauenklinik und Poliklinik (1)
- Institut für Experimentelle Biomedizin (1)
- Institut für Hygiene und Mikrobiologie (1)
Sonstige beteiligte Institutionen
EU-Project number / Contract (GA) number
- 101003595 (1)
Purpose
The trauma centre of the Wuerzburg University Hospital has integrated a pioneering dual-room twin-CT scanner in a multiple trauma pathway. For concurrent treatment of two trauma patients, two carbon CT examination and intervention tables are positioned head to head with one sliding CT-Gantry in the middle. The focus of this study is the process of trauma care with the time to CT (tCT) and the time to operation (tOR) as quality indicator.
Methods
All patients with suspected multiple trauma, who required emergency surgery and who were initially diagnosed by the CT trauma protocol between 05/2018 and 12/2018 were included. Data relating to time spans (tCT and tOR), severity of injury and outcome was obtained.
Results
110 of the 589 screened trauma patients had surgery immediately after finishing primary assessment in the ER. The ISS was 17 (9–34) (median and interquartile range, IQR). tCT was 15 (11–19) minutes (median and IQR) and tOR was 96.5 (75–119) minutes (median and IQR). In the first 30 days, seven patients died (6.4%) including two within the first 24 h (2%). There were two ICU days (1–6) (median and IQR) and one (0–1) (median and IQR) ventilator day.
Conclusion
The twin-CT technology is a fascinating tool to organize high-quality trauma care for two multiple trauma patients simultaneously
Background
Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT.
Methods
This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020.
Results
Median age was 61 years (IQR: 51–69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87–189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 % of the patients with deep vein/arm thrombosis in 39 %, pulmonary embolism in 22 %, and major bleeding in 17 %. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 %CI 1.3–10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications.
Conclusions
Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..
Background
The viral load and tissue distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain important questions. The current study investigated SARS-CoV-2 viral load, biodistribution and anti-SARS-CoV-2 antibody formation in patients suffering from severe corona virus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS).
Methods
This is a retrospective single-center study in 23 patients with COVID-19-induced ARDS. Data were collected within routine intensive care. SARS-CoV-2 viral load was assessed via reverse transcription quantitative polymerase chain reaction (RT-qPCR). Overall, 478 virology samples were taken. Anti-SARS-CoV-2-Spike-receptor binding domain (RBD) antibody detection of blood samples was performed with an enzyme-linked immunosorbent assay.
Results
Most patients (91%) suffered from severe ARDS during ICU treatment with a 30-day mortality of 30%. None of the patients received antiviral treatment. Tracheal aspirates tested positive for SARS-CoV-2 in 100% of the cases, oropharyngeal swabs only in 77%. Blood samples were positive in 26% of the patients. No difference of viral load was found in tracheal or blood samples with regard to 30-day survival or disease severity. SARS-CoV-2 was never found in dialysate. Serologic testing revealed significantly lower concentrations of SARS-CoV-2 neutralizing IgM and IgA antibodies in survivors compared to non-survivors (p = 0.009).
Conclusions
COVID-19 induced ARDS is accompanied by a high viral load of SARS-CoV-2 in tracheal aspirates, which remained detectable in the majority throughout intensive care treatment. Remarkably, SARS-CoV-2 RNA was never detected in dialysate even in patients with RNAemia. Viral load or the buildup of neutralizing antibodies was not associated with 30-day survival or disease severity.
Background
Postoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs. Postoperative atelectasis of dorsal lung regions as a common PPC has been described before, but its clinical relevance is insufficiently examined. Pulmonary electrical impedance tomography (EIT) enables the bedside visualization of regional ventilation in real-time within a transversal section of the lung. Dorsal atelectasis or effusions might cause a ventral redistribution of ventilation. We hypothesized the existence of ventral redistribution in spontaneously breathing patients during their recovery from abdominal and peripheral surgery and that vital capacity is reduced if regional ventilation shifts to ventral lung regions.
Methods
This prospective observational study included 69 adult patients undergoing elective surgery with an expected intermediate or high risk for PPCs. Patients undergoing abdominal and peripheral surgery were recruited to obtain groups of equal size. Patients received general anesthesia with and without additional regional anesthesia. On the preoperative, the first and the third postoperative day, EIT was performed at rest and during spirometry (forced breathing). The center of ventilation in dorso-ventral direction (COVy) was calculated.
Results
Both groups received intraoperative low tidal volume ventilation. Postoperative ventral redistribution of ventilation (forced breathing COVy; preoperative: 16.5 (16.0–17.3); first day: 17.8 (16.9–18.2), p < 0.004; third day: 17.4 (16.2–18.2), p = 0.020) and decreased forced vital capacity in percentage of predicted values (FVC%predicted) (median: 93, 58, 64%, respectively) persisted after abdominal surgery. In addition, dorsal to ventral shift was associated with a decrease of the FVC%predicted on the third postoperative day (r = − 0.66; p < 0.001). A redistribution of pulmonary ventilation was not observed after peripheral surgery. FVC%predicted was only decreased on the first postoperative day (median FVC%predicted on the preoperative, first and third day: 85, 81 and 88%, respectively). In ten patients occurred pulmonary complications after abdominal surgery also in two patients after peripheral surgery.
Conclusions
After abdominal surgery ventral redistribution of ventilation persisted up to the third postoperative day and was associated with decreased vital capacity. The peripheral surgery group showed only minor changes in vital capacity, suggesting a role of the location of surgery for postoperative redistribution of pulmonary ventilation.
Background:
Regional ventilation of the lung can be visualized by pulmonary electrical impedance tomography (EIT). The aim of this study was to examine the post‐operative redistribution of regional ventilation after lung surgery dependent on the side of surgery and its association with forced vital capacity.
Methods:
In this prospective, observational cohort study 13 patients undergoing right and 13 patients undergoing left‐sided open or video‐thoracoscopic procedures have been investigated. Pre‐operative measurements with EIT and spirometry were compared with data obtained 3 days post‐operation. The center of ventilation (COV) within a 32 × 32 pixel matrix was calculated from EIT data. The transverse axis coordinate of COV, COVx (left/right), was modified to COVx′ (ipsilateral/contralateral). Thus, COVx′ shows a negative change if ventilation shifts contralateral independent of the side of surgery. This enabled testing with two‐way ANOVA for repeated measurements (side, time).
Results:
The perioperative shift of COVx′ was dependent on the side of surgery (P = .007). Ventilation shifted away from the side of surgery after the right‐sided surgery (COVx′‐1.97 pixel matrix points, P < .001), but not after the left‐sided surgery (COVx′‐0.61, P = .425). The forced vital capacity (%predicted) decreased from 94 (83‐109)% (median [quartiles]; [left‐sided]) and 89 (80‐97)% (right‐sided surgery) to 61 (59‐66)% and 62 (40‐72)% (P < .05), respectively. The perioperative changes in forced vital capacity (%predicted) were weakly associated with the shift of COVx′.
Conclusion:
Only after right‐sided lung surgery, EIT showed reduced ventilation on the side of surgery while vital capacity was markedly reduced in both groups.
Background
Acute respiratory distress syndrome (ARDS) is a complex clinical diagnosis with various possible etiologies. One common feature, however, is pulmonary permeability edema, which leads to an increased alveolar diffusion pathway and, subsequently, impaired oxygenation and decarboxylation. A novel inhaled peptide agent (AP301, solnatide) was shown to markedly reduce pulmonary edema in animal models of ARDS and to be safe to administer to healthy humans in a Phase I clinical trial. Here, we present the protocol for a Phase IIB clinical trial investigating the safety and possible future efficacy endpoints in ARDS patients.
Methods
This is a randomized, placebo-controlled, double-blind intervention study. Patients with moderate to severe ARDS in need of mechanical ventilation will be randomized to parallel groups receiving escalating doses of solnatide or placebo, respectively. Before advancing to a higher dose, a data safety monitoring board will investigate the data from previous patients for any indication of patient safety violations. The intervention (application of the investigational drug) takes places twice daily over the course of 7 days, ensued by a follow-up period of another 21 days.
Discussion
The patients to be included in this trial will be severely sick and in need of mechanical ventilation. The amount of data to be collected upon screening and during the course of the intervention phase is substantial and the potential timeframe for inclusion of any given patient is short. However, when prepared properly, adherence to this protocol will make for the acquisition of reliable data. Particular diligence needs to be exercised with respect to informed consent, because eligible patients will most likely be comatose and/or deeply sedated at the time of inclusion.
Trial registration
This trial was prospectively registered with the EU Clinical trials register (clinicaltrialsregister.eu). EudraCT Number: 2017-003855-47.
Background:
Ventilation with high positive end-expiratory pressure (PEEP) can lead to hepatic dysfunction. The aim of this study was to investigate the hepatic effects of strategies using high airway pressures either in pressure-controlled ventilation (PCV) or in high-frequency oscillatory ventilation (HFOV) combined with an arteriovenous extracorporeal lung assist (ECLA).
Material/Methods:
Pietrain pigs underwent induction of lung injury by saline lavage. Ventilation was continued for 24 hours either as PCV with tidal volumes of 6 ml/kg and PEEP 3 cmH2O above the lower inflection point of the pressure-volume curve or as HFOV (≥12 Hz) with a mean tracheal airway pressure 3 cmH2O above the lower inflection point combined with arteriovenous ECLA (HFOV+ECLA). Fluids and norepinephrine stabilized the circulation. The indocyanine green plasma disappearance rate, serum bilirubin, aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, alkaline phosphatase, glutamate dehydrogenase, lactate dehydrogenase and creatine kinase were determined repeatedly. Finally, liver neutrophils were counted and liver cell apoptosis was assessed by terminal deoxynucleotidyl transferase nick end labeling (TUNEL).
Results:
Aspartate aminotransferase increased in the PCV group about three-fold and in the HFOV+ECLA group five-fold (p<0.001). Correspondingly, creatine kinase increased about two-fold and four-fold, respectively (p<0.001). Lactate dehydrogenase was increased in the HFOV+ECLA group (p<0.028). The number of neutrophils infiltrating the liver tissue and the apoptotic index were low.
Conclusions:
High airway pressure PCV and HFOV with ECLA in the treatment of lavage-induced lung injury in pigs did not cause liver dysfunction or damage. The detected elevation of enzymes might be of extrahepatic origin.
Background. Missed or delayed detection of progressive neuronal damage after traumatic brain injury (TBI) may have negative impact on the outcome. We investigated whether routine follow-up CT is beneficial in sedated and mechanically ventilated trauma patients. Methods. The study design is a retrospective chart review. A routine follow-up cCT was performed 6 hours after the admission scan. We defined 2 groups of patients, group I: patients with equal or recurrent pathologies and group II: patients with new findings or progression of known pathologies. Results. A progression of intracranial injury was found in 63 patients (42%) and 18 patients (12%) had new findings in cCT 2 (group II). In group II a change in therapy was found in 44 out of 81 patients (54%). 55 patients with progression or new findings on the second cCT had no clinical signs of neurological deterioration. Of those 24 patients (44%) had therapeutic consequences due to the results of the follow-up cCT. Conclusion. We found new diagnosis or progression of intracranial pathology in 54% of the patients. In 54% of patients with new findings and progression of pathology, therapy was changed due to the results of follow-up cCT. In trauma patients who are sedated and ventilated for different reasons a routine follow-up CT is beneficial.