### Refine

#### Has Fulltext

- yes (2)

#### Is part of the Bibliography

- yes (2)

#### Document Type

- Journal article (1)
- Doctoral Thesis (1)

#### Language

- English (2)

#### Keywords

- multi-fluid mixture (2)
- BGK approximation (1)
- Gasgemisch (1)
- Modellierung (1)
- Plasma (1)
- Polyatomare Verbindungen (1)
- Transportkoeffizient (1)
- degrees of freedom in internal energy (1)
- entropy inequality (1)
- existence of solutions (1)

#### Institute

The present thesis considers the modelling of gas mixtures via a kinetic description. Fundamentals about the Boltzmann equation for gas mixtures and the BGK approximation are presented. Especially, issues in extending these models to gas mixtures are discussed. A non-reactive two component gas mixture is considered. The two species mixture is modelled by a system of kinetic BGK equations featuring two interaction terms to account for momentum and energy transfer between the two species. The model presented here contains several models from physicists and engineers as special cases. Consistency of this model is proven: conservation properties, positivity of all temperatures and the H-theorem. The form in global equilibrium as Maxwell distributions is specified. Moreover, the usual macroscopic conservation laws can be derived.
In the literature, there is another type of BGK model for gas mixtures developed by Andries, Aoki and Perthame, which contains only one interaction term. In this thesis, the advantages of these two types of models are discussed and the usefulness of the model presented here is shown by using this model to determine an unknown function in the energy exchange of the macroscopic equations for gas mixtures described in the literature by Dellacherie. In addition, for each of the two models existence and uniqueness of mild solutions is shown. Moreover, positivity of classical solutions is proven.
Then, the model presented here is applied to three physical applications: a plasma consisting of ions and electrons, a gas mixture which deviates from equilibrium and a gas mixture consisting of polyatomic molecules.
First, the model is extended to a model for charged particles. Then, the equations of magnetohydrodynamics are derived from this model. Next, we want to apply this extended model to a mixture of ions and electrons in a special physical constellation which can be found for example in a Tokamak. The mixture is partly in equilibrium in some regions, in some regions it deviates from equilibrium. The model presented in this thesis is taken for this purpose, since it has the advantage to separate the intra and interspecies interactions. Then, a new model based on a micro-macro decomposition is proposed in order to capture the physical regime of being partly in equilibrium, partly not. Theoretical results are presented, convergence rates to equilibrium in the space-homogeneous case and the Landau damping for mixtures, in order to compare it with numerical results.
Second, the model presented here is applied to a gas mixture which deviates from equilibrium such that it is described by Navier-Stokes equations on the macroscopic level. In this macroscopic description it is expected that four physical coefficients will show up, characterizing the physical behaviour of the gases, namely the diffusion coefficient, the viscosity coefficient, the heat conductivity and the thermal diffusion parameter. A Chapman-Enskog expansion of the model presented here is performed in order to capture three of these four physical coefficients. In addition, several possible extensions to an ellipsoidal statistical model for gas mixtures are proposed in order to capture the fourth coefficient. Three extensions are proposed: An extension which is as simple as possible, an intuitive extension copying the one species case and an extension which takes into account the physical motivation of the physicist Holway who invented the ellipsoidal statistical model for one species. Consistency of the extended models like conservation properties, positivity of all temperatures and the H-theorem are proven. The shape of global Maxwell distributions in equilibrium are specified.
Third, the model presented here is applied to polyatomic molecules. A multi component gas mixture with translational and internal energy degrees of freedom is considered. The two species are allowed to have different degrees of freedom in internal energy and are modelled by a system of kinetic ellipsoidal statistical equations. Consistency of this model is shown: conservation properties, positivity of the temperature, H-theorem and the form of Maxwell distributions in equilibrium. For numerical purposes the Chu reduction is applied to the developed model for polyatomic gases to reduce the complexity of the model and an application for a gas consisting of a mono-atomic and a diatomic gas is given.
Last, the limit from the model presented here to the dissipative Euler equations for gas mixtures is proven.

We consider the Bathnagar–Gross–Krook (BGK) model, an approximation of the Boltzmann equation, describing the time evolution of a single momoatomic rarefied gas and satisfying the same two main properties (conservation properties and entropy inequality). However, in practical applications, one often has to deal with two additional physical issues. First, a gas often does not consist of only one species, but it consists of a mixture of different species. Second, the particles can store energy not only in translational degrees of freedom but also in internal degrees of freedom such as rotations or vibrations (polyatomic molecules). Therefore, here, we will present recent BGK models for gas mixtures for mono- and polyatomic particles and the existing mathematical theory for these models.