Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Keywords
- Abbildende Spektroskopie (1)
- Bodenbedeckung (1)
- Bodenbedeckungsgrad (1)
- Desertifikation (1)
- Drylands (1)
- Ground Cover Fraction (1)
- HyMap (1)
- Hyperspektrale Fernerkundung (1)
- Imaging Spectroscopy (1)
- MESMA (1)
Institute
Weltweit sind Trockengebiete in ständiger Veränderung, verursacht durch natürliche klimatische Schwankungen und oftmals durch Prozesse der Landdegradation. Auch weisen die meisten semi-ariden Naturräume eine große räumliche Heterogenität auf, hervorgerufen durch ein kleinräumiges Mosaik aus Gräsern, kleineren Sträuchern und Bereichen offenliegenden Bodens. Die Dichte der Vegetation wird primär vom pflanzenverfügbaren Wasser bestimmt, aber auch der Entwicklungs- und Degradationszustand der Böden sowie anthropogen bedingte Faktoren spielen hierbei eine Rolle. Zur Charakterisierung und Kartierung der Vegetation sowie zur Bewertung des Bodenerosionsrisikos und des Degradationszustands hat sich die Erhebung der Bedeckungsgrade von vitaler, photosynthetisch aktiver Vegetation (PV), von abgestorbener oder zeitweise vertrockneter und somit nicht photosynthetisch aktiver Vegetation (NPV) sowie von offenliegendem Boden als zweckmäßig herausgestellt. Die Nutzung der Fernerkundung für diese Aufgabe erfolgt zumeist nur für kleinmaßstäbige Kartierungen und – im Falle von Multispektralsensoren – unter Vernachlässigung nicht-photosynthetisch aktiver Vegetation. Die räumliche Variabilität der Vegetation-Boden-Mosaike liegt oftmals in der Größenordnung von wenigen Metern und somit unterhalb des räumlichen Auflösungsvermögens von Fernerkundungssystemen. Um dennoch die verschiedenen Anteile innerhalb eines Pixels identifizieren und quantifizieren zu können, sind Methoden der Subpixel-Klassifikation notwendig. In dieser Arbeit wird eine Methodik zur verbesserten und automatisierbaren Ableitung von Bodenbedeckungsgraden in semi-ariden Naturräumen vorgestellt. Hierzu wurde ein Verfahren zur linearen spektralen Entmischung in Form einer Multiple Endmember Spectral Mixture Analysis (MESMA) entwickelt und umgesetzt. Durch diese Methodik kann explizit die spektrale Variabilität von Vegetation und Boden in das Mischungsmodellmiteinbezogen werden, und quantitative Anteile für die funktionalen Klassen PV, NPV und Boden innerhalb eines Pixels erfasst werden. Durch die räumliche Kartierung der verwendeten EM wird weiterhin eine thematische Klassifikation erreicht. Die hierfür benötigten Informationen können – wie im Falle der Spektren reiner Materialien (EM-Spektren) – aus den Bilddaten selbst abgeleitet werden, oder können – wie ein Geländemodell und die Information über den Scanwinkel – im Zuge der Vorprozessierung aus weiteren Datenquellen erzeugt werden. Hinsichtlich der automatisierten EM-Ableitung wird eine zweistufige Methodik eingesetzt, welche auf einer angepassten Version des Sequential Maximum Angle Convex Cone (SMACC)-Verfahrens sowie der Analyse einer ersten Entmischungsiteration basiert. Die Klassifikation der gefundenen potentiellen EM erfolgt durch ein merkmalsbasiertes Verfahren. Weiterhin weisen nicht-photosynthetisch aktive Vegetation und Boden eine hohe spektrale Ähnlichkeit auf. Zur sicheren Trennung kann die Identifikation schmaler Absorptionsbanden dienen. Zu diesen zählen beispielsweise die Absorptionsbanden von Holozellulose und – je nach Bodentyp – Absorptionsbanden von Bodenmineralen. Auch die spektrale Variabilität der Klassen PV und NPV erfordert zur sicheren Unterscheidung die Verwendung biophysikalisch erklärbarer Merkmale im Spektrum. Hierzu zählen unter anderem die Stärke der Chlorophyll-Absorption, die Form und Lage der ’RedEdge’ und das Auftreten von Holozellulosebanden. Da diese spektrale Information bei herkömmlichen Entmischungsansätzen nicht berücksichtigt wird, erfolgt überwiegend eine Optimierung der Gesamtalbedo, was zu einer schlechten Trennung der Klassen führen kann. Aus diesem Grund wird in der vorliegenden Arbeit der MESMA-Ansatz dahingehend erweitert, dass spektrale Information in Form von identifizierten und parametrisierten Absorptionsbanden in den Entmischungsprozess mit einfließt und hierdurch das Potential hyperspektraler Datensätze besser genutzt werden kann. Auch wird in einer zusätzlichen Entmischungsiteration die räumliche Nachbarschaft betrachtet, um insbesondere die Verwendung des sinnvollsten Boden-EMs zu gewährleisten. Ein zusätzliches Problemfeld stellt die numerische Lösung des überbestimmten und oftmals schlecht konditionierten linearen Mischungsmodells dar. Hierzu kann durch die Verwendung des BVLS-Algorithmus und des Ausschlusses kritischer EM-Kombinationen eine numerisch stabile Lösung gefunden werden. Um die oftmals immense Rechenzeit von MESMA-Verfahren zu verkürzen, besteht die Möglichkeit einer iterativen EM-Auswahl und somit die Vermeidung einer Lösung des Mischungssystems durch Berechnung aller EM-Kombinationen (’Brute-Force’-Ansatz). Ein weiterer wichtiger Punkt ist die explizite pixelweise Angabe zur Zuverlässigkeit der Entmischungsergebnisse. Dies erfolgt auf Basis des Mischungsmodells selbst, durch den Vergleich zu empirischen Regressionsmodellen, durch die Berücksichtigung des lokalen Einfallswinkels sowie durch die Integration von Qualitätsangaben der Ausgangsdaten. Um das Verfahren systematisch und unter kontrollierten Bedingungen zu verifizieren und um den Einfluss verschiedener externer Parameter sowie die typischen Genauigkeiten auf einer breiten Datenbasis zu ermitteln, wird eine Simulationskette zur Erzeugung synthetischer Mischungen erstellt. In diese Simulationen fließen Feldspektren von Böden und Pflanzen verschiedener semi-arider Gebiete mit ein, um möglichst viele Fälle abdecken zu können. Die eigentliche Validierung erfolgt auf HyMap-Datensätzen des Naturparks ’Cabo de Gata’ in der andalusischen Provinz Almería sowie auf Messungen, die begleitend im Feld durchgeführt wurden. Hiermit konnte die Methodik auf ihre Genauigkeit unter den konkreten Anforderungen des Anwendungsbeispiels überprüft werden. Die erzielbare Genauigkeit dieser automatisierten Methodik liegt mit einem mittleren Fehler um rund 10% Abundanz absolut im selben Wertebereich oder nur geringfügig höher als die Ergebnisse publizierter manueller MESMA-Ansätze. Weiterhin konnten die typischen Genauigkeiten der Verifikation im Zuge der Validierung bestätigt werden. Den limitierenden Faktor des Ansatzes stellen in der Praxis fehlerhafte oder unvollständige EM-Modelle dar. Mit der vorgestellten Methodik ist somit die Möglichkeit gegeben, die Bedeckungsgrade quantitativ und automatisiert im Subpixelbereich zu erfassen.