Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Keywords
- Amygdala (1)
- Medizin (1)
- OCD (1)
- Ras-Raf-Signalweg (1)
- SPRED2 (1)
- SPRED2-defiziente Mäuse (1)
- Zwangsstörung (1)
Institute
In der vorliegenden Dissertation wurden die Folgen einer SPRED2-Defizienz in einem Knockout Mausmodell untersucht. Dabei wurde insbesondere die mögliche Verbindung zur Zwangsstörung, einer psychiatrischen Erkrankung beleuchtet. Das SPRED2-Protein kommt im menschlichen Körper in zahlreichen Geweben vor, besonders im Hirn wurde eine ubiquitäre Expression nachgewiesen und ein Zusammenhang mit der Neurogenese und neuronaler Differenzierung vermutet. Seine regulatorische Funktion besteht in einer inhibitorischen Wirkung auf den BDNF/TrkB-ERK-Signalweg, welcher u.a. für die Transkription neuronaler Gene verantwortlich ist. Die verwendeten SPRED2-defizienten Mäuse wurden durch Insertion eines Gene-Trap Vektors in das Spred2-Gen generiert. Die Insertion verhindert letztendlich die korrekte Translation des Proteins. Von der durch weitere Verpaarung entstehenden SPRED2-Knockout Mauslinie wurden ausschließlich männliche Tiere verwendet. Im Rahmen einer SPRED2-KO-Studie von der AG Schuh des Physiologischen Instituts der Universität Würzburg, die u.a. die Entgleisung der HHNA mit resultierendem erhöhten Stresshormonspiegel und eine Dysregulation des Mineralhaushaltshormons Aldosteron zeigte, wurden bei den Versuchstieren zwanghafte Verhaltensmuster beobachtet. Daraufhin wurden elektrophysiologische Messungen durchgeführt, die auf eine Anomalie in der synaptischen Übertragung zwischen Thalamus und Amygdala hindeuteten. Erhöhte Effizienz und Erregbarkeit der amygdaloiden Neuronen führten zu der morphologischen Untersuchung, die im Rahmen dieser Arbeit durchgeführt wurden. Da die Afferenzen des Thalamus vorwiegend in den lateralen Kern der Amygdala projizieren, wurde zunächst dieser betrachtet. Ziel der Untersuchung war es, Erkenntnisse darüber zu erlangen, ob der Knockout des SPRED2-Proteins in Mäusen zu einer veränderten Morphologie der Neuronen der lateralen Amygdala führt. Falls dies der Fall sein sollte, könnte damit zumindest ansatzweise das zwanghafte Verhalten der SPRED2-defizienten Mäusen erklärt werden. Die Hirne der Versuchstiere wurden nach der Golgi-Cox-Imprägnierung nach Glaser und Van der Loos und der Einbettung in Celloidin in 150 μm dicke Scheiben geschnitten und anschließend mithilfe eines Hellfeld-Mikroskops und des Neurolucida-Systems analysiert. Quantitativ erfasst und analysiert wurden pyramidale Klasse 1-Neuronen der lateralen Amygdala inklusive absoluter Anzahl und Dichte der Spines an ihren Dendriten. Die Untersuchung zeigte bei SPRED2-KO-Mäusen eine signifikante Erhöhung der mittleren Länge des apikalen Dendriten in Branch order 3 und eine tendenzielle Erhöhung der Gesamtzahl der Spines an den Dendriten in Branch order 1-3 gegenüber den Wildtyp-Mäusen. Daraus lässt sich folgern, dass ein Knockout des SPRED2-Proteins sich auf die Morphologie der Neuronen der lateralen Amygdala auswirkt. Die erhöhte mittlere Länge des apikalen Dendriten in Branch order 3 und die tendenziell erhöhte Spine-Anzahl korrelieren mit der gesteigerten synaptischen Übertragung und Erregbarkeit an amygdaloiden pyramidalen Neuronen. Auf molekularer Ebene kann die Hyperaktivität der lateralen Amygdala als Folge der fehlenden Inhibition des BDNF/TrkB-ERK-Signalwegs und der dadurch veränderten Expression zahlreicher synaptischer Proteine diskutiert werden. Die veränderte Morphologie der Neuronen in der lateralen Amygdala kann eine Ursache für das zwanghafte Verhalten der Mäuse sein, jedoch ist anzunehmen, dass Zwangsstörungen nicht bloß eine monokausale Ursache haben. Diese Arbeit identifiziert SPRED2 als neuen Regulator der Morphologie und Aktivität von Synapsen und die Amygdala als wichtige Hirnregion bei der Entstehung von Zwangsstörungen. SPRED2 ist somit ein vielversprechender Angriffspunkt für andere und spezifischere Untersuchungen der Hirnfunktion und eine potenzielle genetische Ursache für weitere neurologische Erkrankungen.
DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of genespecific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.