Refine
Has Fulltext
- yes (46)
Is part of the Bibliography
- yes (46)
Year of publication
Document Type
- Journal article (46)
Language
- English (46)
Keywords
- psoriasis (4)
- Merkel cell carcinoma (3)
- immunohistochemistry (3)
- therapy (3)
- COVID-19 (2)
- Germany (2)
- PD-L1 (2)
- T cells (2)
- bullous pemphigoid (2)
- dermatology (2)
Institute
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (43)
- Medizinische Klinik und Poliklinik II (7)
- Pathologisches Institut (7)
- Comprehensive Cancer Center Mainfranken (4)
- Institut für Klinische Epidemiologie und Biometrie (2)
- Institut für Virologie und Immunbiologie (2)
- Kinderklinik und Poliklinik (2)
- Klinik und Poliklinik für Nuklearmedizin (2)
- Medizinische Klinik und Poliklinik I (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
Sonstige beteiligte Institutionen
Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype.
(1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy.
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
The massive infiltration of lymphocytes into the skin is a hallmark of numerous human skin disorders. By co-culturing murine keratinocytes with splenic T cells we demonstrate here that T cells affect and control the synthesis and secretion of chemokines by keratinocytes. While pre-activated CD8\(^+\)T cells induce the synthesis of CXCL9 and CXCL10 in keratinocytes and keep in check the synthesis of CXCL1, CXCL5, and CCL20, keratinocytes dampen the synthesis of CCL3 and CCL4 in pre-activated CD8\(^+\)T cells. One key molecule is IFN-γ that is synthesized by CD8\(^+\)T cells under the control of NFATc1 and NFATc2. CD8\(^+\)T cells deficient for both NFAT factors are unable to induce CXCL9 and CXCL10 expression. In addition, CD8\(^+\)T cells induced numerous type I IFN-inducible “defense genes” in keratinocytes encoding the PD1 and CD40 ligands, TNF-α and caspase-1. The enhanced expression of type I IFN-inducible genes resembles the gene expression pattern at the dermal/epidermal interface in lichen planus, an inflammatory T lymphocyte-driven skin disease, in which we detected the expression of CXCL10 in keratinocytes in close vicinity to the infiltration front of T cells. These data reflect the multifaceted interplay of lymphocytes with keratinocytes at the molecular level.
Background: Kerinokeratosis papulosa (KP) is considered an extremely rare genodermatosis presenting usually as waxy papules on the trunk in childhood.
Objective: To describe and analyze the clinical, histological and potential etiopathological aspects of KP.
Methods: The dermatoscopic features of a new case of KP of childhood are investigated. The presence of human papillomavirus (HPV) DNA in lesional skin was studied by polymerase chain reaction. Furthermore, all cases of KP of childhood reported so far were reviewed.
Results: As a diagnostic tool, we describe for the first time a dermatoscopic feature, namely a cribriform pattern of KP, in an 11-year-old boy. In addition, we detected HPV (type 57) in his KP lesions.
Conclusions: Dermatoscopic examination might be a useful tool to distinguish KP from other skin lesions, e.g. common warts. The detection of HPV type 57 might hint to an etiological role of HPV for KP.
The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.
Treatment modalities of chronic plaque psoriasis have dramatically changed over the past ten years with a still continuing shift from inpatient to outpatient treatment. This development is mainly caused by outpatient availability of highly efficient and relatively well-tolerated systemic treatments, in particular BioLogicals. In addition, inpatient treatment is time-and cost-intense, conflicting with the actual burst of health expenses and with patient preferences. Nevertheless, inpatient treatment with dithranol and UV light still is a major mainstay of psoriasis treatment in Germany. The current study aims at comparing the total costs of inpatient treatment and outpatient follow-up to mere outpatient therapy with different modalities (topical treatment, phototherapy, classic systemic therapy or BioLogicals) over a period of 12 months. To this end, a retrospective cost-of-illness study was conducted on 120 patients treated at the University Medical Centre Mannheim between 2005 and 2006. Inpatient therapy caused significantly higher direct medical, indirect and total annual costs than outpatient treatment (13,042 (sic) versus 2,984 (sic)). Its strong influence on cost levels was confirmed by regression analysis, with total costs rising by 104.3% in case of inpatient treatment. Patients receiving BioLogicals produced the overall highest costs, whereas outpatient treatment with classic systemic antipsoriatic medications was less cost-intense than other alternatives.
Merkel cell carcinoma (MCC) is an aggressive, virus-associated, neuroendocrine tumor of the skin mainly affecting immunocompromised patients. Higher intratumoral infiltration with CD3 and CD8 positive T-cells is associated with a better prognosis, highlighting the relevance of the immune system for MCC development and progression. In this study 21 primary MCCs were stained with immune cell markers including CD3, CD4, CD8, CD68, CD20, and S100. Furthermore, tumor-infiltrating neutrophils, tertiary lymphoid structures and PD-L1 expression were analyzed and correlated with overall and recurrence free survival. All MCCs were Merkel Cell Polyomavirus positive. Overall and recurrence-free survival did not correlate with intra-and peritumoral CD3 and CD8 T-cell infiltration. In addition, no significant association regarding prognosis was found for tumor-associated neutrophils, tumor-associated macrophages or PD-L1 positivity in MCCs. Interestingly, the presence of tertiary lymphoid structures (TLS) in the tumor microenvironment significantly correlated with recurrence-free survival (P=0.025). In addition, TLS were significantly associated with a higher CD8/CD4 ratio in the tumor periphery (P=0.032), but not in the center of the tumor (P > 0.999). These results demonstrate for the first time that TLS, easily assessed in paraffin-embedded tissue in the tumor periphery of MCCs, may be a valuable prognostic factor indicating prolonged recurrence free survival.
Systemic treatment of metastatic uveal melanoma: review of literature and future perspectives
(2013)
Up to 50% of patients with uveal melanoma develop metastatic disease with poor prognosis. Regional, mainly liver-directed, therapies may induce limited tumor responses but do not improve overall survival. Response rates of metastatic uveal melanoma (MUM) to systemic chemotherapy are poor. Insights into the molecular biology of MUM recently led to investigation of new drugs. In this study, to compare response rates of systemic treatment for MUM we searched Pubmed/Web of Knowledge databases and ASCO website (1980–2013) for “metastatic/uveal/melanoma” and “melanoma/eye.” Forty studies (one case series, three phase I, five pilot, 22 nonrandomized, and two randomized phase II, one randomized phase III study, data of three expanded access programs, three retrospective studies) with 841 evaluable patients were included in the numeric outcome analysis. Complete or partial remissions were observed in 39/841 patients (overall response rate [ORR] 4.6%; 95% confidence intervals [CI] 3.3–6.3%), no responses were observed in 22/40 studies. Progression-free survival ranged from 1.8 to 7.2, median overall survival from 5.2 to 19.0 months as reported in 21/40 and 26/40 studies, respectively. Best responses were seen for chemoimmunotherapy (ORR 10.3%; 95% CI 4.8–18.7%) though mainly in first-line patients. Immunotherapy with ipilimumab, antiangiogenetic approaches, and kinase inhibitors have not yet proven to be superior to chemotherapy. MEK inhibitors are currently investigated in a phase II trial with promising preliminary data. Despite new insights into genetic and molecular background of MUM, satisfying systemic treatment approaches are currently lacking. Study results of innovative treatment strategies are urgently awaited.
Background
Merkel cell carcinoma (MCC) is a rare cutaneous neoplasm with increasing incidence, aggressive behavior and poor prognosis. Somatostatin receptors (SSTR) are expressed in MCC and represent a potential target for both imaging and treatment.
Methods
To non-invasively assess SSTR expression in MCC using PET and the radiotracers [68Ga]DOTA-D-Phe1-Tyr3-octreotide (DOTATOC) or -octreotate (DOTATATE) as surrogate for tumor burden. In 24 patients with histologically proven MCC SSTR-PET was performed and compared to results of computed tomography (CT).
Results
SSTR-PET detected primary and metastatic MCC lesions. On a patient-based analysis, sensitivity of SSTR-PET was 73% for nodal metastases, 100% for bone, and 67% for soft-tissue metastases, respectively. Notably, brain metastases were initially detected by SSTR-PET in 2 patients, whereas liver and lung metastases were diagnosed exclusively by CT. SSTR-PET showed concordance to CT results in 20 out of 24 patients. Four patients (17%) were up-staged due to SSTR-PET and patient management was changed in 3 patients (13%).
Conclusion
SSTR-PET showed high sensitivity for imaging bone, soft tissue and brain metastases, and particularly in combination with CT had a significant impact on clinical stage and patient management.