Refine
Has Fulltext
- yes (12)
Is part of the Bibliography
- yes (12)
Document Type
- Journal article (11)
- Doctoral Thesis (1)
Language
- English (12)
Keywords
- differentiation (2)
- 3D lung tumor tissue models (1)
- Arthrography (1)
- Aspergillus fumigatus (1)
- Calibration (1)
- Clinical prediction rule (1)
- Clinical remission (1)
- Drug-free remission (1)
- EMT (1)
- Electron spin (1)
Institute
- Kinderklinik und Poliklinik (3)
- Frauenklinik und Poliklinik (2)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (2)
- Medizinische Klinik und Poliklinik II (2)
- Pathologisches Institut (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Comprehensive Cancer Center Mainfranken (1)
- Fakultät für Chemie und Pharmazie (1)
- Institut für Hygiene und Mikrobiologie (1)
- Institut für Virologie und Immunbiologie (1)
EU-Project number / Contract (GA) number
- 229289 (1)
High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.
The massive infiltration of lymphocytes into the skin is a hallmark of numerous human skin disorders. By co-culturing murine keratinocytes with splenic T cells we demonstrate here that T cells affect and control the synthesis and secretion of chemokines by keratinocytes. While pre-activated CD8\(^+\)T cells induce the synthesis of CXCL9 and CXCL10 in keratinocytes and keep in check the synthesis of CXCL1, CXCL5, and CCL20, keratinocytes dampen the synthesis of CCL3 and CCL4 in pre-activated CD8\(^+\)T cells. One key molecule is IFN-γ that is synthesized by CD8\(^+\)T cells under the control of NFATc1 and NFATc2. CD8\(^+\)T cells deficient for both NFAT factors are unable to induce CXCL9 and CXCL10 expression. In addition, CD8\(^+\)T cells induced numerous type I IFN-inducible “defense genes” in keratinocytes encoding the PD1 and CD40 ligands, TNF-α and caspase-1. The enhanced expression of type I IFN-inducible genes resembles the gene expression pattern at the dermal/epidermal interface in lichen planus, an inflammatory T lymphocyte-driven skin disease, in which we detected the expression of CXCL10 in keratinocytes in close vicinity to the infiltration front of T cells. These data reflect the multifaceted interplay of lymphocytes with keratinocytes at the molecular level.
Objective
To analyse the role of multibiomarker disease activity (MBDA) score in predicting disease relapses in patients with rheumatoid arthritis (RA) in sustained remission who tapered disease modifying antirheumatic drug (DMARD) therapy in RETRO, a prospective randomised controlled trial.
Methods
MBDA scores (scale 1-100) were determined based on 12 inflammation markers in baseline serum samples from 94 patients of the RETRO study. MBDA scores were compared between patients relapsing or remaining in remission when tapering DMARDs. Demographic and disease-specific parameters were included in multivariate logistic regression analysis for defining predictors of relapse.
Results
Moderate-to-high MBDA scores were found in 33% of patients with RA overall. Twice as many patients who relapsed (58%) had moderate/high MBDA compared with patients who remained in remission (21%). Baseline MBDA scores were significantly higher in patients with RA who were relapsing than those remaining in stable remission (N=94; p=0.0001) and those tapering/stopping (N=59; p=0.0001). Multivariate regression analysis identified MBDA scores as independent predictor for relapses in addition to anticitrullinated protein antibody (ACPA) status. Relapse rates were low (13%) in patients who were MBDA-/ACPA-, moderate in patients who were MBDA+/ACPA- (33.3%) and MBDA-ACPA+ (31.8%) and high in patients who were MBDA+/ACPA+ (76.4%).
Conclusions
MBDA improved the prediction of relapses in patients with RA in stable remission undergoing DMARD tapering. If combined with ACPA testing, MBDA allowed prediction of relapse in more than 80% of the patients.
Trial registration number EudraCT
2009-015740-42.
Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively.
KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface.
There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) %.
Background:
Triangular fibrocartilage complex (TFCC) lesions commonly cause ulnar-sided wrist pain and instability of the distal radioulnar joint. Due to its triangular shape, discontinuity of the TFCC is oftentimes difficult to visualize in radiological standard planes. Radial multiplanar reconstructions (MPR) may have the potential to simplify diagnosis in CT wrist arthrography. The objective of this study was to assess diagnostic advantages provided by radial MPR over standard planes for TFCC lesions in CT arthrography.
Methods:
One hundred six patients (49 women, 57 men; mean age 44.2 ± 15.8 years) underwent CT imaging after wrist arthrography. Two radiologists (R1, R2) retrospectively analyzed three randomized datasets for each CT arthrography. One set contained axial, coronal and sagittal planes (MPR\(_{Standard}\)), while the other two included an additional radial reconstruction with the rotating center either atop the ulnar styloid (MPR\(_{Styloid}\)) or in the ulnar fovea (MPR\(_{Fovea}\)). Readers evaluated TFCC differentiability and condition. Suspected lesions were categorized using Palmer’s and Atzei’s classification and diagnostic confidence was stated on a fivepoint Likert scale.
Results:
Compared to standard planes, differentiability of the superficial and deep TFCC layer was superior in radial reconstructions (R1/R2; MPR\(_{Fovea}\): p < 0.001; MPRStyloid: p ≤ 0.007). Palmer and Atzei lesions were present in 86.8% (92/106) and 52.8% (56/106) of patients, respectively. Specificity, sensitivity and accuracy for central Palmer lesions did not differ in radial and standard MPR. For peripheral Atzei lesions, sensitivity (MPR\(_{Standard}\) 78.6%/80.4%, MPR\(_{Styloid}\) 94.6%/94.6%, MPR\(_{Fovea}\) 91.1%/89.3%) and accuracy (MPR\(_{Standard}\) 86.8%/86.8%, MPR\(_{Styloid}\) 96.2%/96.2%, MPR\(_{Fovea}\) 94.3%/93.4%) improved with additional styloid-centered (p = 0.004/0.008) and foveacentered (p = 0.039/0.125) reconstructions. No substantial difference was observed between both radial MPR (p = 0.688/0.250). Interrater agreement was almost perfect for each dataset (κ\(_{Standard}\) = 0.876, κ\(_{Styloid}\) = 0.894, κ\(_{Fovea}\) = 0.949). Diagnostic confidence increased with addition of either radial MPR (p < 0.001).
Conclusions:
Ancillary radial planes improve accuracy and diagnostic confidence for detection of peripheral TFCC lesions in CT arthrography of the wrist.
Background
Published models predicting nasal colonization with Methicillin-resistant Staphylococcus aureus among hospital admissions predominantly focus on separation of carriers from non-carriers and are frequently evaluated using measures of discrimination. In contrast, accurate estimation of carriage probability, which may inform decisions regarding treatment and infection control, is rarely assessed. Furthermore, no published models adjust for MRSA prevalence.
Methods
Using logistic regression, a scoring system (values from 0 to 200) predicting nasal carriage of MRSA was created using a derivation cohort of 3091 individuals admitted to a European tertiary referral center between July 2007 and March 2008. The expected positive predictive value of a rapid diagnostic test (GeneOhm, Becton & Dickinson Co.) was modeled using non-linear regression according to score. Models were validated on a second cohort from the same hospital consisting of 2043 patients admitted between August 2008 and January 2012. Our suggested correction score for prevalence was proportional to the log-transformed odds ratio between cohorts. Calibration before and after correction, i.e. accurate classification into arbitrary strata, was assessed with the Hosmer-Lemeshow-Test.
Results
Treating culture as reference, the rapid diagnostic test had positive predictive values of 64.8% and 54.0% in derivation and internal validation corhorts with prevalences of 2.3% and 1.7%, respectively. In addition to low prevalence, low positive predictive values were due to high proportion (> 66%) of mecA-negative Staphylococcus aureus among false positive results. Age, nursing home residence, admission through the medical emergency department, and ICD-10-GM admission diagnoses starting with “A” or “J” were associated with MRSA carriage and were thus included in the scoring system, which showed good calibration in predicting probability of carriage and the rapid diagnostic test’s expected positive predictive value. Calibration for both probability of carriage and expected positive predictive value in the internal validation cohort was improved by applying the correction score.
Conclusions
Given a set of patient parameters, the presented models accurately predict a) probability of nasal carriage of MRSA and b) a rapid diagnostic test’s expected positive predictive value. While the former can inform decisions regarding empiric antibiotic treatment and infection control, the latter can influence choice of screening method.
Stimulating the immune system to attack cancer is a promising approach, even for the control of advanced cancers. Several cytokines that promote interferon-γ-dominated immune responses show antitumor activity, with interleukin 12 (IL-12) being of major importance. Here, we used an antibody-IL-12 fusion protein (NHS-IL12) that binds histones of necrotic cells to treat human sarcoma in humanized mice. Following sarcoma engraftment, NHS-IL12 therapy was combined with either engineered IL-7 (FcIL-7) or IL-2 (IL-2MAB602) for continuous cytokine bioavailability. NHS-IL12 strongly induced innate and adaptive antitumor immunity when combined with IL-7 or IL-2. NHS-IL12 therapy significantly improved survival of sarcoma-bearing mice and caused long-term remissions when combined with IL-2. NHS-IL12 induced pronounced cancer cell senescence, as documented by strong expression of senescence-associated p16\(^{INK4a}\) and nuclear translocation of p-HP1γ, and permanent arrest of cancer cell proliferation. In addition, this cancer immunotherapy initiated the induction of myogenic differentiation, further promoting the hypothesis that efficient antitumor immunity includes mechanisms different from cytotoxicity for efficient cancer control in vivo.
Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies.
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies.
The development of controlled biodegradable materials is of fundamental importance in immunodrug delivery to spatiotemporally controlled immune stimulation but avoid systemic inflammatory side effects. Based on this, polycarbonate nanogels are developed as degradable micellar carriers for transient immunoactivation of lymph nodes. An imidazoquinoline‐type TLR7/8 agonist is covalently conjugated via reactive ester chemistry to these nanocarriers. The nanogels not only provide access to complete disintegration by the hydrolysable polymer backbone, but also demonstrate a gradual disintegration within several days at physiological conditions (PBS, pH 6.4–7.4, 37 °C). These intrinsic properties limit the lifetime of the carriers but their payload can still be successfully leveraged for immunological studies in vitro on primary immune cells as well as in vivo. For the latter, a spatiotemporal control of immune cell activation in the draining lymph node is found after subcutaneous injection. Overall, these features render polycarbonate nanogels a promising delivery system for transient activation of the immune system in lymph nodes and may consequently become very attractive for further development toward vaccination or cancer immunotherapy. Due to the intrinsic biodegradability combined with the high chemical control during the manufacturing process, these polycarbonate‐based nanogels may also be of great importance for clinical translation.