Refine
Has Fulltext
- yes (12)
Is part of the Bibliography
- yes (12)
Document Type
- Journal article (11)
- Doctoral Thesis (1)
Keywords
- bioinformatics (2)
- lung cancer (2)
- machine learning (2)
- 3D tissue models (1)
- 3D-Zellkulturen (Krebstherapie) (1)
- BRAF mutation (1)
- Biology (1)
- Cell surface proteomics (1)
- Chagas diagnosis (1)
- Chagas disease (1)
Institute
Sonstige beteiligte Institutionen
High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.
Background: Chagas disease (CD) is a major burden in Latin America, expanding also to non-endemic countries. A gold standard to detect the CD causing pathogen Trypanosoma cruzi is currently not available. Existing real time polymerase chain reactions (RT-PCRs) lack sensitivity and/or specificity. We present a new, highly specific RT-PCR for the diagnosis and monitoring of CD. Material and Methods: We analyzed 352 serum samples from Indigenous people living in high endemic CD areas of Colombia using three leading RT-PCRs (k-DNA-, TCZ-, 18S rRNA-PCR), the newly developed one (NDO-PCR), a Rapid Test/enzyme-linked immuno sorbent assay (ELISA), and immunofluorescence. Eighty-seven PCR-products were verified by sequence analysis after plasmid vector preparation. Results: The NDO-PCR showed the highest sensitivity (92.3%), specificity (100%), and accuracy (94.3%) for T. cruzi detection in the 87 sequenced samples. Sensitivities and specificities of the kDNA-PCR were 89.2%/22.7%, 20.5%/100% for TCZ-PCR, and 1.5%/100% for the 18S rRNA-PCR. The kDNA-PCR revealed a 77.3% false positive rate, mostly due to cross-reactions with T. rangeli (NDO-PCR 0%). TCZ- and 18S rRNA-PCR showed a false negative rate of 79.5% and 98.5% (NDO-PCR 7.7%), respectively. Conclusions: The NDO-PCR demonstrated the highest specificity, sensitivity, and accuracy compared to leading PCRs. Together with serologic tests, it can be considered as a reliable tool for CD detection and can improve CD management significantly.
Cushing’s disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD’s genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5%) and USP48 (13.3%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5% and 7%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.
MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.
Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.
Der Einsatz von computergestützten Analysen hat sich zu einem festen Bestandteil der biowissenschaftlichen Forschung etabliert. Im Rahmen dieser vorliegenden Arbeit wurden systembiologische Untersuchungen auf verschiedene biologische Themengebiete und Organismen angewendet. In diesem Zusammenhang liefert die Arbeit einen innovativen und interdisziplinären methodischen Ansatz. Die grundlegende Frage lautet: Wie verstehe und beschreibe ich Signalwege und wie kann ich sie beeinflussen? Der Ansatz verknüpft verschiedene biologische Datensätze und Datenebenen miteinander, beginnend vom Genom und Interaktionskontext über semiquantitative Simulationen hin zu neuen Interventionen und Experimenten, welche therapeutisch und biotechnologisch genutzt werden können. Die Analysen können auf diese Weise
- zu einem besseren Verständnis experimenteller Daten und biologischer Fragestellungen beitragen und ermöglichen ein systematisches Verständnis der zugrunde liegenden Signalwege und Netzwerkeffekte (z.B. in Pflanzen).
- Darüber hinaus ermöglichen sie die Identifizierung wichtiger funktioneller Hubproteine und die Entwicklung neuer therapeutischer Strategien für weitere experimentelle Testungen (z.B. Tumormodelle),
- stellen zudem einen hilfreichen Schritt auf dem Weg zur personalisierten Medizin (z.B. lncRNAs und Tumormodelle) und Medikamentenentwicklung (z.B. Datenbank DrumPID) dar.
(i) Als Grundlage wurde hierzu eine integrierte systembiologische Methode entwickelt, welche experimentelle Daten (z.B. Transkriptomdaten) hinsichtlich ihrer biologischen Funktionen untersucht und die Identifizierung relevanter funktioneller Cluster und Hubproteine ermöglicht. In einem ersten Teil wurden Analysen zum pflanzlichen Immunsystem durchgeführt. Mithilfe der entwickelten Methode wurden Genexpressionsdatensätze von A. thaliana, die mit dem Pathogen Pst DC3000 infiziert wurden, untersucht, um den Einfluss verschiedener Virulenzfaktoren auf das Interaktom der Wirtspflanze zu untersuchen und neue Modulatoren einer CK-vermittelten Immunabwehr zu finden. In diesem Zusammenhang konnte gezeigt werden, dass die von Pst DC3000 sekretierten Abwehrstoffe wichtige pflanzliche Hormonsignalwege für die Immunabwehr in A. thaliana beeinflussen. Die Ergebnisse zeigen zudem, dass sich der Einfluss auf das Netzwerkverhalten der Effektorproteine und COR-Phytotoxine von dem der PAMPs unterscheidet, sich jedoch auch eine Regulierung gemeinsamer Signalwege und eine Überlappung der beiden Phasen der Immunantwort (PTI und ETI) in A. thaliana finden lassen. Die komplexe Immunantwort auf eine Infektion spiegelt sich zudem in einer höheren Anzahl an funktionellen Clustern und Hubproteinen in Pst DC3000 gegenüber den beiden untersuchten Mutanten wider, wobei sich für Pst DC3000 insbesondere ein stark vernetztes immunrelevantes Cluster um den JA-Signalweg zeigt. Weiterhin wurden anhand der entwickelten Methode wichtige Hubproteine für die Immunabwehr identifiziert. Als bedeutende Vertreter sind AHK2 und AAR14 zu nennen, welche Teil des Zweikomponentensystems der Signalübertragung von CK sind und hierbei wichtige Modulatoren für eine CK-vermittelte Immunabwehr darstellen.
(ii) Im zweiten Teil der Arbeit schließen sich Untersuchungen an einem in vitro-Experiment einer 2D- und 3D-Zellkultur einer HSP90-Behandlung in einem Lungentumormodell an. In diesem Zusammenhang wurden mithilfe der entwickelten Methode Unterschiede zwischen den beiden Zellkultursystemen gefunden, die das unterschiedliche Behandlungsansprechen erklären, und für die beiden KRAS-mutierten Zelllinien A549 und H441 des 3D-Testsystems neue prognostische und therapeutische Kandidaten identifiziert. Hierbei haben die durchgeführten Analysen zwei funktionelle Cluster von Protein-Interaktionen um p53 und die STAT-Familie gefunden, welche eine Verbindung zu HSP90 haben und die entsprechenden Behandlungsunterschiede nach einer HSP90-Inhibierung zwischen den beiden Zellkultursystemen erklären können. Unter Berücksichtigung des zelllinien-spezifischen Mutationshintergrunds wurde eine prognostische Markersignatur und daraus abgeleitet HIF1A für die H441-Zelllinie und AMPK für die A549-Zelllinie als neue therapeutische Targets gefunden, wobei die anschließend durchgeführten in silico-Simulationen einen potentiellen therapeutischen Effekt aufzeigen konnten. Weiterhin wurden wichtige experimentelle Readout-Parameter in ein in silico-Lungentumormodell integriert, wobei unter Einbeziehung des Mutationshintergrunds für die verwendeten Zelllinien die HSP90-Behandlung des 3D-Testsystems computergestützt abgebildet werden konnte. Im weiteren Verlauf wurden im in silico-Lungentumormodell Resistenzmechanismen nach einer Gefitinib-Behandlung mit bekanntem Mutationsstatus für die Zelllinien HCC827 und A549 untersucht und daraus folgend neue Therapieansätze abgeleitet, die von potentieller klinischer Bedeutung sein können. Die durchgeführten in silico-Simulationen für HCC827 konnten hierbei zeigen, dass eine EGFR- und c-MET-Koaktivierung zu einer Gefitinib-Resistenz führen kann, wohingegen bei den A549 eine Komutation von KRAS und IGF-1R zu einem geringen Behandlungsansprechen beiträgt. Die Simulationen lassen zudem erkennen, dass eine direkte Inhibierung der an der Resistenzentwicklung beteiligten Rezeptoren c-MET und IGF-1R in beiden Fällen nicht die bestmögliche Therapiestrategie darstellt. In beiden Zelllinien konnte gezeigt werden, dass eine kombinierte Inhibierung von PI3K und MEK den bestmöglichen therapeutischen Effekt liefert, was demnach einen vielversprechenden Therapieansatz bei Gefitinib-resistenten Lungentumorpatienten darstellt. In einem weiteren Schritt wurde das therapeutische Potential der miRNA-21 im in silico-Modell für die HCC827-Zelllinie untersucht. Die durchgeführten Simulationen zeigen, dass eine miRNA-21-Überexpression zu einer Resistenzentwickung nach Gefitinib-Behandlung beitragen kann, wobei eine Inhibierung der miRNA-21 diesen Effekt umkehren kann. Die Ergebnisse lassen zudem erkennen, dass eine PTEN-Aktivierung als potentieller Marker einer erfolgreichen therapeutischen Inhibierung der miRNA-21 fungieren kann, wohingegen eine reduzierte miRNA-21-Expression als möglicher Marker für eine erfolgreiche Gefitinib-Behandlung dienen kann.
(iii) Im dritten Teil der Arbeit wurden systematisch RNA- und Protein-Interaktionen untersucht. Hierzu wurden integrierte systembiologische Analysen an neu identifizierten und funktionell bislang unbekannten lncRNAs durchgeführt. Die Analysen für die infolge einer Herzhypertrophie hochregulierte lncRNA Chast haben umfassend gezeigt, dass diese Proteine und Transkriptionsfaktoren regulieren und binden kann, welche die Signalübertragung und Genexpression regulieren, aber auch eine Verbindung zum kardiovaskulären System und stressinduzierter Herzhypertrophie besitzt. Anhand der Ergebnisse lässt sich schlussfolgern, dass Chast direkt und indirekt (a) Proteine binden und die Translation beeinflussen kann, zudem eine Chromatin-modifizierende Funktion besitzt und so die Transkription, z.B. für herz- und stress-assoziierte Gene, reguliert, und/oder (b) in einem negativen Feedbackloop seine eigene Transkription reguliert. Obwohl lncRNAs meist eine geringe Konservierung aufweisen, konnten die durchgeführten Analysen für Chast eine Sequenz-Struktur-Konservierung in Säugetieren aufzeigen. Weiterhin haben die Untersuchungen an zwei hypoxie-induzierten lncRNAs in Endothelzellen gezeigt, dass die lncRNA MIR503HG eine hohe Sequenz-Struktur-Konservierung in Säugetieren besitzt, wohingegen die LINC00323-003 eine geringe Konservierung aufzeigt. Dies untermauert die Tatsache, dass lncRNAs häufig eine geringe Konservierung aufweisen, was Untersuchungen in Modellorganismen hinsichtlich einer therapeutischen Nutzung schwierig machen.
Da sich zahlreiche Untersuchungen auf Interaktionen und Signalwege konzentriert haben, wurde abschließend eine Datenbank entwickelt, welche Analysen von Protein-Interaktionen und Signalwegen nachhaltig voranbringt. Die entwickelte DrumPID-Datenbank stellt insbesondere die Interaktion zwischen einem Medikament und seinem Target in den Fokus und ermöglicht Analysen einzelner Interaktionen und beteiligter Signalwege, bietet zusätzlich aber auch verschiedene Links zu anderen Datenbanken für individuelle weiterführende Analysen. DrumPID ermöglicht ein geeignetes Medikament u. a. für ein vorgegebenes Zielprotein zu finden und dessen Wirkmechanismus und Interaktionskontext zu untersuchen, was zu einem besseren experimentellen Verständnis beitragen kann. Zudem erlaubt DrumPID eine potentielle chemische Leitstruktur für ein Zielprotein zu entwickeln, was z.B. spezifisch ein parasitisches Protein inhibiert, ohne dabei einen toxischen Effekt im Menschen zu haben. Zahlreiche weitere Pharmakabeispiele belegen, dass DrumPID für den täglichen wissenschaftlichen Gebrauch auf dem Gebiet der Analyse von Protein-Pharmaka-Interaktionen und der Medikamentenentwicklung geeignet ist.
Die beschriebenen Ergebnisse der Promotionsarbeit wurden in fünf Originalarbeiten, zwei Übersichtsartikeln und einem Buchteil, u. a. in Science Translational Medicine, veröffentlicht, sechs dieser Publikationen erfolgten im Rahmen von Erstautorschaften.
The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships.
The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature identification are limited. We present a step-by-step computational protocol for functional gene expression analysis and the identification of diagnostic and prognostic signatures by combining meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a comprehensive evaluation using different validation strategies. However, the protocol is not restricted to specific disease types and can therefore be used by a broad community. The accompanying R package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited bioinformatics training.
Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.
Epicardium-derived cells (EPDC) and atrial stromal cells (ASC) display cardio-regenerative potential, but the molecular details are still unexplored. Signals which induce activation, migration and differentiation of these cells are largely unknown. Here we have isolated rat ventricular EPDC and rat/human ASC and performed genetic and proteomic profiling. EPDC and ASC expressed epicardial/mesenchymal markers (WT-1, Tbx18, CD73,CD90, CD44, CD105), cardiac markers (Gata4, Tbx5, troponin T) and also contained phosphocreatine. We used cell surface biotinylation to isolate plasma membrane proteins of rEPDC and hASC, Nano-liquid chromatography with subsequent mass spectrometry and bioinformatics analysis identified 396 rat and 239 human plasma membrane proteins with 149 overlapping proteins. Functional GO-term analysis revealed several significantly enriched categories related to extracellular matrix (ECM), cell migration/differentiation, immunology or angiogenesis. We identified receptors for ephrin and growth factors (IGF, PDGF, EGF, anthrax toxin) known to be involved in cardiac repair and regeneration. Functional category enrichment identified clusters around integrins, PI3K/Akt-signaling and various cardiomyopathies. Our study indicates that EPDC and ASC have a similar molecular phenotype related to cardiac healing/regeneration. The cell surface proteome repository will help to further unravel the molecular details of their cardio-regenerative potential and their role in cardiac diseases.