Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2011 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Furchungsteilung (1)
- Genregulation (1)
- Japankärpfling (1)
- Midblastula-transition MBT MZT (1)
- Transkription <Genetik> (1)
- Zellvolumen (1)
- Zygote (1)
Institute
The study of animal development is one of the oldest disciplines in the field of biology and the collected data from countless investigations on numerous species have formed a general understanding of the animal life-cycle. Almost one century ago, one consequence of these intense investigations was the discovery of specific morphological changes that occur during the cleavage phase, a period that follows fertilization and egg activation at the very beginning of animal embryogenesis. These observations resulted into the formulation of the concept of a midblastula transition (MBT). So far, the mechanism of the nucleo-cytoplasmic ratio model is the only one that explains MBT regulation in a satisfying way. It suggests that the MBT is controlled by several maternal repressive factors in the egg, which are titrated out by every cell division until they lose their repressing potential. Although this regulatory mechanism was proven for several species and in different approaches, it is still only a rudimentary model for MBT control and leaves numerous questions unanswered. On this conceptual background, this thesis has shown that embryos from the medaka fish (Oryzias latipes) lose their cell cycle synchrony already after the fourth or fifth round of cell divisions, and replace it by a metasynchronous divisions pattern, in which cell division occurs in clear waves beginning in the embryo's center. The reason for this change in division mode is still unknown, although several hypotheses were put forward, most notable a difference in yolk-access between cells. However, this theory was weakened by division waves that progressed from one embryonic pole to the opposing one, which were occasionally observed in deformed embryos, leaving the mechanism for this phenomenon furthermore unclear. Those deformed embryos were most likely the result of asymmetric cell divisions at very early stages, a phenomenon which occurred in a significant percentage of medaka embryos and which directly influenced the equal distribution of cytoplasmic material. It could not beuncovered what kind of effects this unequal distribution of cytoplasm exerted on the progression of embryonic development, but it can be argued that relevant differences in cell volumes could result in cell clusters that will enter MBT at different time points. Comparable observations were already made in other species and it was hypothesized that they were the direct results of early unequal cell cleavages. Finally, it was demonstrated that zygotic transcription in medaka embryos is activated prior to the hitherto assumed time of the first transcriptional initiation. Moreover, indications were found that strongly speak for a transcriptional activation that occurs in two steps; a first step at the 16-cell stage when first cells were identified positive for RNAPII phosphorylation, and a second step at the 64-cell stage, when the number of p-RNAPII positive cells significantly increased. A stepwise activation of zygotic transcription was already observed in other species, but only for the overall increasing amount of mRNAs and irrespective of the actual number of transcriptionally active cells within the embryos. .. Overall, these data confirm and expand the basic knowledge of pre-MBT embryos and about the MBT itself. Furthermore, they also suggest that many early processes in pre-MBT embryos are only rudimentarily understood or still totally unknown.