Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2018 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Elektronenspektroskopie (1)
- Optische Eigenschaft (1)
- QAHE (1)
- REELS (1)
- Topologischer Isolator (1)
- XPS (1)
- spectroscopy (1)
- topological insulator (1)
Institute
In this dissertation the electronic and high-energy optical properties of thin nanoscale
films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied
by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss
spectroscopy (EELS). Magnetic topological insulators are presently of broad interest
as the combination of ferromagnetism and spin-orbit coupling in these materials
leads to a new topological phase, the quantum anomalous Hall state (QAHS), with
dissipation less conduction channels. Determining and controlling the physical
properties of these complex materials is therefore desirable for a fundamental understanding
of the QAHS and for their possible application in spintronics. EELS can
directly probe the electron energy-loss function of a material from which one can
obtain the complex dynamic dielectric function by means of the Kramers-Kronig
transformation and the Drude-Lindhard model of plasmon oscillations.
The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with
regards to inelastic background contributions. It is shown that the spectra can be
accurately described based on the electron energy-loss function obtained from an
independent EELS measurement. This allows for a comprehensive and quantitative
analysis of the XPS data, which will facilitate future core-level spectroscopy studies
in this class of topological materials. From the EELS data, furthermore, the bulk and
surface optical properties were estimated, and compared to ab initio calculations
based on density functional theory (DFT) performed in the GW approximation
for Sb2Te3. The experimental results show a good agreement with the calculated
complex dielectric function and the calculated energy-loss function. The positions of
the main plasmon modes reported here are expected to be generally similar in other
materials in this class of nanoscale TI films. Hence, the present work introduces
EELS as a powerful method to access the high-energy optical properties of TI
thin films. Based on the presented results it will be interesting to explore more
systematically the effects of stoichiometry, magnetic doping, film thickness and
surface morphology on the electron-loss function, potentially leading to a better
understanding of the complex interplay of structural, electronic, magnetic and
optical properties in MTI nanostructures.