Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Language
- English (4)
Keywords
- mHealth (3)
- tinnitus (3)
- crowdsensing (2)
- ecological momentary assessment (2)
- architectural design (1)
- cloud-native (1)
- condition prediction (1)
- ecological momentary assessments (1)
- geospatial data (1)
- machine learning (1)
Institute
Background: Tinnitus is often described as the phantom perception of a sound and is experienced by 5.1% to 42.7% of the population worldwide, at least once during their lifetime. The symptoms often reduce the patient's quality of life. The TrackYourTinnitus (TYT) mobile health (mHealth) crowdsensing platform was developed for two operating systems (OS)-Android and iOS-to help patients demystify the daily moment-to-moment variations of their tinnitus symptoms. In all platforms developed for more than one OS, it is important to investigate whether the crowdsensed data predicts the OS that was used in order to understand the degree to which the OS is a confounder that is necessary to consider.
Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case.
The effect of non-personalised tips on the continued use of self-monitoring mHealth applications
(2020)
Chronic tinnitus, the perception of a phantom sound in the absence of corresponding stimulus, is a condition known to affect patients' quality of life. Recent advances in mHealth have enabled patients to maintain a ‘disease journal’ of ecologically-valid momentary assessments, improving patients' own awareness of their disease while also providing clinicians valuable data for research. In this study, we investigate the effect of non-personalised tips on patients' perception of tinnitus, and on their continued use of the application. The data collected from the study involved three groups of patients that used the app for 16 weeks. Groups A & Y were exposed to feedback from the start of the study, while group B only received tips for the second half of the study. Groups A and Y were run by different supervisors and also differed in the number of hospital visits during the study. Users of Group A and B underwent assessment at baseline, mid-study, post-study and follow-up, while users of group Y were only assessed at baseline and post-study. It is seen that the users in group B use the app for longer, and also more often during the day. The answers of the users to the Ecological Momentary Assessments are seen to form clusters where the degree to which the tinnitus distress depends on tinnitus loudness varies. Additionally, cluster-level models were able to predict new unseen data with better accuracy than a single global model. This strengthens the argument that the discovered clusters really do reflect underlying patterns in disease expression.
Interactive system for similarity-based inspection and assessment of the well-being of mHealth users
(2021)
Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported.