Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (6)
Language
- English (6)
Keywords
- exact matching (2)
- trabectome (2)
- Ab interno trabeculectomy (1)
- Anterior chamber perfusion model (1)
- Distal outflow trac (1)
- Netarsudil (1)
- Porcine eye (1)
- Rho-kinase inhibitor (1)
- ab interno trabeculectomy (1)
- aqueous humor outflow (1)
Institute
Tissue-engineered anterior segment eye cultures demonstrate hallmarks of conventional organ culture
(2023)
Background
Glaucoma is a blinding disease largely caused by dysregulation of outflow through the trabecular meshwork (TM), resulting in elevated intraocular pressure (IOP). We hypothesized that transplanting TM cells into a decellularized, tissue-engineered anterior segment eye culture could restore the outflow structure and function.
Methods
Porcine eyes were decellularized with freeze–thaw cycles and perfusion of surfactant. We seeded control scaffolds with CrFK cells transduced with lentiviral vectors to stably express eGFP and compared them to scaffolds seeded with primary TM cells as well as to normal, unaltered eyes. We tracked the repopulation behavior, performed IOP maintenance challenges, and analyzed the histology.
Results
Transplanted cells localized to the TM and progressively infiltrated the extracellular matrix, reaching a distribution comparable to normal, unaltered eyes. After a perfusion rate challenge to mimic a glaucomatous pressure elevation, transplanted and normal eyes reestablished a normal intraocular pressure (transplanted = 16.5 ± 0.9 mmHg, normal = 16.9 ± 0.9). However, eyes reseeded with eGFP-expressing CrFK cells could not regulate IOP, remaining high and unstable (27.0 ± 6.2 mmHg) instead.
Conclusion
Tissue-engineered anterior segment scaffolds can serve as readily available, scalable ocular perfusion cultures. This could reduce dependency on scarce donor globes in outflow research and may allow engineering perfusion cultures with specific geno- and phenotypes.
Purpose
To characterize the effects of netarsudil on the aqueous humor outflow tract distal to the trabecular meshwork (TM). Wehypothesized that netarsudil increases outflow facility in eyes with and without circumferential ab interno trabeculectomy (AIT)that removes the TM.
Methods
Sixty-four porcine anterior segment cultures were randomly assigned to groups with (n= 32) and without circumferential AIT (n= 32). Cultures were exposed to 0.1, 1, and 10μM netarsudil (N= 8 eyes per concentration). For each concentration,IOP and vessel diameters were compared with their respective pretreatment baselines. Outflow tract vessel diameters wereassessed by spectral-domain optical coherence tomography (SDOCT) and rendered in 4D (XYZ time series).
Results
Netarsudil at 1μM reduced IOP both in eyes with TM (−0.60 ± 0.24 mmHg,p= 0.01) and in eyes without TM (−1.79 ±0.42 mmHg,p< 0.01). At this concentration, vessels of the distal outflow tract dilated by 72%. However, at 0.1μMnetarsudilelevated IOP in eyes with TM (1.59 ± 0.36 mmHg,p< 0.001) as well as in eyes without TM (0.23 ± 0.32 mmHg,p<0.001). Vessels of the distal outflow tract constricted by 31%. Similarly, netarsudil at a concentration of 10μM elevated IOP both in eyeswith TM (1.91 ± 0.193,p< 0.001) and in eyes without TM (3.65 ± 0.86 mmHg,p< 0.001). At this concentration, outflow tractvessels constricted by 27%.
Conclusion
In the porcine anterior segment culture, the dose-dependent IOP changes caused by netarsudil matched the diameterchanges of distal outflow tract vessels. Hyper- and hypotensive properties of netarsudil persisted after TM removal
Purpose
We used exact matching for a highly balanced comparison of ab interno trabeculectomy (AIT) with the trabectome to trabeculectomy with mitomycin C (TRAB).
Methods
A total of 5485 patients who underwent AIT were exact-matched to 196 TRAB patients by baseline intraocular pressure (IOP), number of glaucoma medications, and glaucoma type. Nearest-neighbor–matching was applied to age. Success was defined as a final IOP of less than 21 mmHg, IOP reduction of at least 20% reduction from baseline, and no secondary surgical interventions. Outcomes were measured at 1, 3, 6, 12, 18, and 24 months.
Results
A total of 165 AIT could be matched to 165 TRAB. The mean baseline IOP was 22.3 ± 5.6 mmHg, and the baseline number of glaucoma medications was 2.7 ± 1.1 in both groups. At 24 months, IOP was reduced to 15.8 ± 5.2 mmHg in AIT and 12.4 ± 4.7 mmHg in TRAB. IOP was lower than baseline at all visits (p < 0.01) and lower in TRAB than AIT (p < 0.01). Glaucoma medications were reduced to 2.1 ± 1.3 in AIT and 0.2 ± 0.8 in TRAB. Compared to baseline, patients used fewer drops postoperatively (p < 0.01) and more infrequently in TRAB than in AIT (p > 0.01). Secondary surgical interventions had the highest impact on success and became necessary in 15 AIT and 59 TRAB patients. Thirty-two challenging events occurred in TRAB and none in AIT.
Conclusion
Both AIT and TRAB reduced IOP and medications. This reduction was more significant in TRAB but at the expense of four times as many secondary interventions.
Purpose
To determine whether 24-h IOP monitoring can be a predictor for glaucoma progression and to analyze the inter-eye relationship of IOP, perfusion, and progression parameters.
Methods
We extracted data from manually drawn IOP curves with HIOP-Reader, a software suite we developed. The relationship between measured IOPs and mean ocular perfusion pressures (MOPP) to retinal nerve fiber layer (RNFL) thickness was analyzed. We determined the ROC curves for peak IOP (T\(_{max}\)), average IOP(T\(_{avg}\)), IOP variation (IOP\(_{var}\)), and historical IOP cut-off levels to detect glaucoma progression (rate of RNFL loss). Bivariate analysis was also conducted to check for various inter-eye relationships.
Results
Two hundred seventeen eyes were included. The average IOP was 14.8 ± 3.5 mmHg, with a 24-h variation of 5.2 ± 2.9 mmHg. A total of 52% of eyes with RNFL progression data showed disease progression. There was no significant difference in T\(_{max}\), T\(_{avg}\), and IOP\(_{var}\) between progressors and non-progressors (all p > 0.05). Except for T\(_{avg}\) and the temporal RNFL, there was no correlation between disease progression in any quadrant and T\(_{max}\), T\(_{avg}\), and IOP\(_{var}\). Twenty-four-hour and outpatient IOP variables had poor sensitivities and specificities in detecting disease progression. The correlation of inter-eye parameters was moderate; correlation with disease progression was weak.
Conclusion
In line with our previous study, IOP data obtained during a single visit (outpatient or inpatient monitoring) make for a poor diagnostic tool, no matter the method deployed. Glaucoma progression and perfusion pressure in left and right eyes correlated weakly to moderately with each other.
Key messages
What is known:
● Our prior study showed that manually obtained 24-hour inpatient IOP measurements in right eyes are poor predictors for glaucoma progression. The inter-eye relationship of 24-hour IOP parameters and disease progression on optical coherence tomography (OCT) has not been examined.
What we found:
● 24-hour IOP profiles of left eyes from the same study were a poor diagnostic tool to detect worsening glaucoma.
● Significant inter-eye correlations of various strengths were found for all tested parameters
Purpose
To achieve a highly balanced comparison of trabecular bypass stenting (IS2, iStent inject) with ab interno trabeculectomy (T, Trabectome) by exact matching.
Methods
Fifty-three IS2 eyes were matched to 3446 T eyes. Patients were matched using exact matching by baseline intraocular pressure (IOP), the number of glaucoma medications, and glaucoma type, and using nearest neighbor matching by age. Individuals without a close match were excluded. All surgeries were combined with phacoemulsification.
Results
A total of 78 eyes (39 in each group) could be matched as exact pairs with a baseline IOP of 18.3 ± 5.1 mmHg and glaucoma medications of 2.7 ± 1.2 in each. IOP in IS2 was reduced to 14.6 ± 4.2 mmHg at 3 months and in T to a minimum of 13.1 ± 3.2 mmHg at 1 month. In IS2, IOP began to rise again at 6 months, eventually exceeding baseline. At 24 months, IOP in IS2 was 18.8 ± 9.0 mmHg and in T 14.2 ± 3.5 mmHg. IS2 had a higher average IOP than T at all postoperative visits (p < 0.05 at 1, 12, 18 months). Glaucoma medications decreased to 2.0 ± 1.5 in IS2 and to 1.5 ± 1.4 in T.
Conclusion
T resulted in a larger and sustained IOP reduction compared with IS2 where a rebound occurred after 6 months to slightly above preoperative values.
Circadian rhythms regulate adaptive alterations in mammalian physiology and are maximally entrained by the short wavelength blue spectrum; cataracts block the transmission of light, particularly blue light. Cataract surgery is performed with two types of intraocular lenses (IOL): (1) conventional IOL that transmit the entire visible spectrum and (2) blue-light-filtering (BF) IOL that block the short wavelength blue spectrum. We hypothesized that the transmission properties of IOL are associated with long-term survival. This retrospective cohort study of a 15-hospital healthcare system identified 9,108 participants who underwent bilateral cataract surgery; 3,087 were implanted with conventional IOL and 6,021 received BF-IOL. Multivariable Cox proportional hazards models that included several a priori determined subgroup and sensitivity analyses yielded estimates supporting that conventional IOL compared with BF-IOL may be associated with significantly reduced risk of long-term death. Confirming these differences and identifying any potential causal mechanisms await the conduct of appropriately controlled prospective translational trials.