Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
Institute
Sonstige beteiligte Institutionen
Photochemical reactions in solution often proceed via competing reaction pathways
comprising intermediates that capture a solvent molecule. A disclosure of the underlying
reaction mechanisms is challenging due to the rapid nature of these processes and the
intricate identification of how many solvent molecules are involved. Here combining
broadband femtosecond transient absorption and quantum mechanics/molecular mechanics
simulations, we show for one of the most reactive species, diphenylcarbene, that the
decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding
dynamics determine which reaction channels are accessible in binary solvent mixtures at
room temperature. In-depth analysis of the amount of nascent intermediates corroborates
the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking
analogy to complexes found at cryogenic temperatures. Our results show that adjacent
solvent molecules take the role of key abettors rather than bystanders for the fate of the
reactive intermediate.
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.