Refine
Has Fulltext
- yes (34)
Is part of the Bibliography
- yes (34)
Document Type
- Journal article (34)
Keywords
- COVID-19 (4)
- blood-brain barrier (4)
- acute respiratory distress syndrome (3)
- breast cancer (2)
- critical care (2)
- critically ill (2)
- inflammation (2)
- iron deficiency (2)
- meta-analysis (2)
- microRNA (2)
Institute
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (34)
- Frauenklinik und Poliklinik (6)
- Medizinische Klinik und Poliklinik I (5)
- Institut für Klinische Epidemiologie und Biometrie (3)
- Neurochirurgische Klinik und Poliklinik (3)
- Institut für Hygiene und Mikrobiologie (2)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (2)
- Graduate School of Life Sciences (1)
- Institut für Anatomie und Zellbiologie (1)
- Institut für Experimentelle Biomedizin (1)
Sonstige beteiligte Institutionen
EU-Project number / Contract (GA) number
- 101003595 (1)
Background
Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT.
Methods
This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020.
Results
Median age was 61 years (IQR: 51–69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87–189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 % of the patients with deep vein/arm thrombosis in 39 %, pulmonary embolism in 22 %, and major bleeding in 17 %. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 %CI 1.3–10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications.
Conclusions
Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..
Hintergrund
Im Rahmen der Pandemie des SARS-CoV-2-Virus erlangte das Patientenkollektiv der Schwangeren früh Aufmerksamkeit. Initial wurde angesichts sich früh abzeichnender Krankheitsfälle bei jüngeren Patienten mit einem erheblichen Aufkommen peripartal zu betreuender, COVID-19-positiver Schwangerer gerechnet.
Ziel der Arbeit
Diese Arbeit vermittelt einen Einblick in die SARS-CoV-2-Infektionszahlen im Rahmen der geburtshilflichen Anästhesie zu Beginn der Pandemie sowie während der zweiten Infektionswelle in Deutschland.
Methoden
Über das COALA-Register (COVID-19 related Obstetric Anaesthesia Longitudinal Assessment-Registry) wurden sowohl von März bis Mai 2020 als auch von Oktober 2020 bis Februar 2021 in Deutschland und der Schweiz wöchentlich prospektiv Daten zu Verdachts- und bestätigten SARS-CoV-2-Fällen bei Schwangeren zum Zeitpunkt der Geburt erhoben. Betrachtet wurden die Verteilung dieser auf die Anzahl der Geburten, Zentren und Erhebungswochen sowie mütterliche Charakteristika und Krankheitsverläufe.
Ergebnisse
Neun Zentren haben im Verlauf 44 SARS-CoV-2-positive Schwangere zum Zeitpunkt der Geburt bei 7167 Geburten (0,6 %) gemeldet (3 Fälle auf 2270 Geburten (0,4 %) und 41 Fälle auf 4897 Geburten (0,8 %)). Berichtet wurden 2 schwere COVID-19-Verläufe (n = 1 mit Todesfolge nach ECMO, n = 1 mit ECMO überlebt). Bei 28 (68 %) Patientinnen verlief die Infektion asymptomatisch. Ein Neugeborenes wurde im Verlauf positiv auf SARS-CoV‑2 getestet.
Schlussfolgerung
Mithilfe des Registers konnte das Auftreten von Fällen zu Beginn der Pandemie zeitnah eingeschätzt werden. Es traten sporadisch Verdachtsfälle bzw. bestätigte Fälle auf. Aufgrund fehlender flächendeckender Testung muss aber von einer Dunkelziffer asymptomatischer Fälle ausgegangen werden. Während der zweiten Infektionswelle wurden 68 % asymptomatische Fälle gemeldet. Jedoch kann es bei jungen, gesunden Patientinnen ohne das Vorliegen typischer Risikofaktoren zu schwerwiegenden Verläufen kommen.
Background: Selective outcome reporting in clinical trials introduces bias in the body of evidence distorting clinical decision making. Trial registration aims to prevent this bias and is suggested by the International Committee of Medical Journal Editors (ICMJE) since 2004.
Methods: The 585 randomized controlled trials (RCTs) published between 1965 and 2017 that were included in a recently published Cochrane review on antiemetic drugs for prevention of postoperative nausea and vomiting were selected. In a retrospective study, we assessed trial registration and selective outcome reporting by comparing study publications with their registered protocols according to the ‘Cochrane Risk of bias’ assessment tool 1.0.
Results: In the Cochrane review, the first study which referred to a registered trial protocol was published in 2004. Of all 585 trials included in the Cochrane review, 334 RCTs were published in 2004 or later, of which only 22% (75/334) were registered. Among the registered trials, 36% (27/75) were pro- and 64% (48/75) were retrospectively registered. 41% (11/27) of the prospectively registered trials were free of selective outcome reporting bias, 22% (6/27) were incompletely registered and assessed as unclear risk, and 37% (10/27) were assessed as high risk. Major outcome discrepancies between registered and published high risk trials were a change from the registered primary to a published secondary outcome (32%), a new primary outcome (26%), and different outcome assessment times (26%). Among trials with high risk of selective outcome reporting 80% favoured at least one statistically significant result. Registered trials were assessed more often as ‘overall low risk of bias’ compared to non-registered trials (64% vs 28%).
Conclusions: In 2017, 13 years after the ICMJE declared prospective protocol registration a necessity for reliable clinical studies, the frequency and quality of trial registration in the field of PONV is very poor. Selective outcome reporting reduces trustworthiness in findings of clinical trials. Investigators and clinicians should be aware that only following a properly registered protocol and transparently reporting of predefined outcomes, regardless of the direction and significance of the result, will ultimately strengthen the body of evidence in the field of PONV research in the future.
Laparoscopic techniques have established themselves as a major part of modern surgery. Their implementation in every surgical discipline has played a vital part in the reduction of perioperative morbidity and mortality. Precise robotic surgery, as an evolution of this, is shaping the present and future operating theatre that an anesthetist is facing. While incisions get smaller and the impact on the organism seems to dwindle, challenges for anesthetists do not lessen and could even become more demanding than in open procedures. This review focuses on the pathophysiological effects of contemporary laparoscopic and robotic procedures and summarizes anesthetic challenges and strategies for perioperative management.
Background
Approximately one in three patients suffers from preoperative anaemia. Even though haemoglobin is measured before surgery, anaemia management is not implemented in every hospital.
Objective
Here, we demonstrate the implementation of an anaemia walk‐in clinic at an Orthopedic University Hospital. To improve the diagnosis of iron deficiency (ID), we examined whether reticulocyte haemoglobin (Ret‐He) could be a useful additional parameter.
Material and Methods
In August 2019, an anaemia walk‐in clinic was established. Between September and December 2019, major orthopaedic surgical patients were screened for preoperative anaemia. The primary endpoint was the incidence of preoperative anaemia. Secondary endpoints included Ret‐He level, red blood cell (RBC) transfusion rate, in‐hospital length of stay and anaemia at hospital discharge.
Results
A total of 104 patients were screened for anaemia. Preoperative anaemia rate was 20.6%. Intravenous iron was supplemented in 23 patients. Transfusion of RBC units per patient (1.7 ± 1.2 vs. 0.2 ± 0.9; p = 0.004) and hospital length of stay (13.1 ± 4.8 days vs. 10.6 ± 5.1 days; p = 0.068) was increased in anaemic patients compared to non‐anaemic patients. Ret‐He values were significantly lower in patients with ID anaemia (33.3 pg [28.6–40.2 pg]) compared to patients with ID (35.3 pg [28.9–38.6 pg]; p = 0.015) or patients without anaemia (35.4 pg [30.2–39.4 pg]; p = 0.001).
Conclusion
Preoperative anaemia is common in orthopaedic patients. Our results proved the feasibility of an anaemia walk‐in clinic to manage preoperative anaemia. Furthermore, our analysis supports the use of Ret‐He as an additional parameter for the diagnosis of ID in surgical patients.
Background
The viral load and tissue distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain important questions. The current study investigated SARS-CoV-2 viral load, biodistribution and anti-SARS-CoV-2 antibody formation in patients suffering from severe corona virus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS).
Methods
This is a retrospective single-center study in 23 patients with COVID-19-induced ARDS. Data were collected within routine intensive care. SARS-CoV-2 viral load was assessed via reverse transcription quantitative polymerase chain reaction (RT-qPCR). Overall, 478 virology samples were taken. Anti-SARS-CoV-2-Spike-receptor binding domain (RBD) antibody detection of blood samples was performed with an enzyme-linked immunosorbent assay.
Results
Most patients (91%) suffered from severe ARDS during ICU treatment with a 30-day mortality of 30%. None of the patients received antiviral treatment. Tracheal aspirates tested positive for SARS-CoV-2 in 100% of the cases, oropharyngeal swabs only in 77%. Blood samples were positive in 26% of the patients. No difference of viral load was found in tracheal or blood samples with regard to 30-day survival or disease severity. SARS-CoV-2 was never found in dialysate. Serologic testing revealed significantly lower concentrations of SARS-CoV-2 neutralizing IgM and IgA antibodies in survivors compared to non-survivors (p = 0.009).
Conclusions
COVID-19 induced ARDS is accompanied by a high viral load of SARS-CoV-2 in tracheal aspirates, which remained detectable in the majority throughout intensive care treatment. Remarkably, SARS-CoV-2 RNA was never detected in dialysate even in patients with RNAemia. Viral load or the buildup of neutralizing antibodies was not associated with 30-day survival or disease severity.
Background
The most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood-brain barrier (BBB).
Methods
We adapted and validated the CD34\(^+\) cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro.
Results
The BLECs cultured together with brain pericytes in transwells developed a tight monolayer with a correct localization of claudin-5 at the tight junctions (TJ). Several BBB marker proteins such as the TJ proteins claudin-5 and occludin, the glucose transporter GLUT-1 or the efflux pumps PG-P and BCRP were upregulated in these cultures. This was accompanied by a reduced paracellular permeability for fluorescein (400 Da). We then used this model for the treatment with the patient sera. Only the sera of breast cancer patients with cerebral metastases had significantly increased levels of the cytokines fractalkine (CX3CL1) and BCA-1 (CXCL13). The increased levels of fractalkine were associated with the estrogen/progesterone receptor status of the tumour. The treatment of BLECs with these sera selectively increased the expression of CXCL13 and TJ protein occludin. In addition, the permeability of fluorescein was increased after serum treatment.
Conclusion
We demonstrate that the CD34\(^+\) cell-derived human in vitro BBB model can be used as a tool to study the molecular mechanisms underlying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.