### Refine

#### Document Type

- Journal article (10)
- Conference Proceeding (1)

#### Keywords

- Festkörperphysik (1)
- Physik (1)

We have investigated Cd\(_{1-x}\)Mn\(_x\)Te thin films with Mn concentrations of x=0.12, 0.18, 0.30, 0.52, and 0.70. These single crystal layers were grown by molecular beam epitaxy on [001] CdTe substrates. The real part of the refractive index, n, was determined below the band-gap Eo in the range of 0.5-2.5 eV at T=300 K. The parallel reOectivity was measured near the Brewster angle at the YAG laser wavelength of 1.064 J.Lm (hv= 1.165 eV). Combining these results with the optical pathlength results (nd) of reOection measurements in a Fourier spectrometer we have determined n(x,v) over a wide spectral range by utilizing a three parameter fit. The accuracy of these results for n should improve waveguide designs based on this material.

In this paper, we present results on the first MBE growth of HgSe. The influence of the GaAs substrate temperature as well as the Hg and Se fluxes on the growth and the electrical properties has been investigated. It has been found that the growth rate is very low at substrate temperatures above 120°C. At 120°C and at lower temperatures, the growth rate is appreciably higher. The sticking coefficient of Se seems to depend inversely on the Hg/Se flux ratio. Epitaxial growth could be maintained at 70°C with Hg/Se flux ratios between lOO and ISO, and at 160°C between 280 and 450. The electron mobilities of these HgSe epilayers at room temperature decrease from a maximum value of 8.2 x 10^3 cm2 /V' s with increasing electron concentration. The concentration was found to be between 6xlO^17 and 1.6x10^19 cm- 3 at room temperature. Rocking curves from X-ray diffraction measurements of the better epilayers have a full width at half maximum of 5S0 arc sec.

We report the results of a detailed investigation on the Te-stabilized (2 x 1) and the Cdstabilized c( 2 X 2) surfaces of ( 100) CdTe substrates. The investigation demonstrates for the first time that both laser illumination and, to a greater extent, high-energy electron irradiation increase the Te desorption and reduce the Cd desorption from ( 100) CdTe surfaces. Thus it is possible by choosing the proper growth temperature and photon or electron fluxes to change the surface reconstruction from the normally Te-stabilized to a Cd-stabilized phase.

The influence of different CdZnTe substrate treatments prior to II-VI molecular beam epitaxial growth on surface stoichiometry, oxygen, and carbon contamination has been studied using x-ray photoelectron spectroscopy and reflection high energy electron diffraction. Heating the substrate at 300 °C can eliminate oxygen contamination, but cannot completely remove carbon from the surface. Heating at higher temperatures decreases the carbon contamination only slightly, while increasing the Zn-Cd ratio on the surface considerably. The magnitude of the latter effect is surprising and is crucial when one is using lattice matched CdZnTe (Zn 4%) substrates.

The surface sublimation of Cd and Te atoms from the zinc blende (111)A CdTe surface has been investigated in detail by reflection high energy electron diffraction and x-ray photoelectron spectroscopy. These experiments verify that Te is much easier to evaporate than Cd. The experimental value for the Te activation energy from a Te stabilized (111)A CdTe surface is 1.41 ±0.1O eV, which is apparently inconsistent with recent theoretical results.

We have grown HgTe/CdTe superlattices by molecular beam epitaxy; barrier thicknesses were in the range from 15 to 91 Å and the well thickness was maintained at a constant value of 30 Å. The infrared photoluminescence was investigated by means of Fourier transform infrared spectroscopy in the temperature range from 4.2 to 300 K. All superlattices showed pronounced photoluminescence at temperatures up to 300 K. To gain more detailed insight into the band structure of the HgTe/CdTe superlattices, band structure calculations were performed. The concept of the envelope function approximation was followed. Employing the transfer matrix method, the calculations were completed taking into account an eight band k·p model. An important parameter in these calculations is the natural valence band offset (VBO) between the well and barrier materials. As a general trend, the value for the direct gap decreases with increasing VBO. The experimentally determined energies of the band gap are in reasonable agreement with the values obtained by the theoretical calculations. A comparison between theory and experiment shows that the observed transition energies are closer to calculations employing a large offset (350 meV) as opposed to a small VBO (40 meV).

We report here that reconstruction on (100), (1lIlA, and (1l1lB CdTe surfaces is either C(2X2), (2X2), and (l X I) or (2X I), (l X I), and (l X I) when they are Cd or Te stabilized, respectively. There is a mixed region between Cd and Te stabilization in which the reflected high-energy electron-diffraction (RHEED) patterns contain characteristics of both Cd- and Te-stabilized surfaces. We have also found that the Cd-to-Te ratio of the x-ray photoelectron intensities of their 3d\(_{3/ 2}\) core levels is about 20% larger for a Cd-stabilized (1lIlA, (1lIlB, or (100) CdTe surface than for a Te-stabilized one. According to a simple model calculation, which was normalized by means of the photoelectron intensity ratio of a Cd-stabilized (lll)A and aTe-stabilized (1l1lB CdTe surface, the experimental data for CdTe surfaces can be explained by a linear dependence of the photoelectron-intensity ratio on the fraction of Cd in the uppermost monatomic layer. This surface composition can be correlated with the surface structure, i.e., the corresponding RHEED patterns. This correlation can in turn be employed to determine Te and Cd evaporation rates. The Te reevaporation rate is increasingly slower for the Te-stabilized (Ill) A, (l1l)B, and (100) surfaces, while the opposite is true for Cd from Cd-stabilized (Ill) A and (Ill)B surfaces. In addition, Te is much more easily evaporated from all the investigated surfaces than is Cd, if the substrate is kept at normal molecular-beam-epitaxy growth temperatures ranging from 2oo·C to 300 ·C.