Refine
Has Fulltext
- yes (21)
Is part of the Bibliography
- yes (21)
Year of publication
Document Type
- Journal article (21)
Keywords
- Arabidopsis thaliana (4)
- abscisic acid (ABA) (2)
- gene expression (2)
- signal transduction (2)
- ABA receptors (1)
- ABP1 (1)
- ALMT (1)
- AUX1 (1)
- Action potentials (1)
- Arabidopsis (1)
Institute
Sonstige beteiligte Institutionen
EU-Project number / Contract (GA) number
- 250194 (3)
- 250194-Carnivorom (1)
- 303674 (1)
- EU250194 (1)
Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.
Sucrose- and H+-Dependent Charge Movements Associated with the Gating of Sucrose Transporter ZmSUT1
(2010)
Background: In contrast to man the majority of higher plants use sucrose as mobile carbohydrate. Accordingly protondriven sucrose transporters are crucial for cell-to-cell and long-distance distribution within the plant body. Generally very negative plant membrane potentials and the ability to accumulate sucrose quantities of more than 1 M document that plants must have evolved transporters with unique structural and functional features. Methodology/Principal Findings: To unravel the functional properties of one specific high capacity plasma membrane sucrose transporter in detail, we expressed the sucrose/H+ co-transporter from maize ZmSUT1 in Xenopus oocytes. Application of sucrose in an acidic pH environment elicited inward proton currents. Interestingly the sucrose-dependent H+ transport was associated with a decrease in membrane capacitance (Cm). In addition to sucrose Cm was modulated by the membrane potential and external protons. In order to explore the molecular mechanism underlying these Cm changes, presteady-state currents (Ipre) of ZmSUT1 transport were analyzed. Decay of Ipre could be best fitted by double exponentials. When plotted against the voltage the charge Q, associated to Ipre, was dependent on sucrose and protons. The mathematical derivative of the charge Q versus voltage was well in line with the observed Cm changes. Based on these parameters a turnover rate of 500 molecules sucrose/s was calculated. In contrast to gating currents of voltage dependentpotassium channels the analysis of ZmSUT1-derived presteady-state currents in the absence of sucrose (I =Q/t) was sufficient to predict ZmSUT1 transport-associated currents. Conclusions: Taken together our results indicate that in the absence of sucrose, ‘trapped’ protons move back and forth between an outer and an inner site within the transmembrane domains of ZmSUT1. This movement of protons in the electric field of the membrane gives rise to the presteady-state currents and in turn to Cm changes. Upon application of external sucrose, protons can pass the membrane turning presteady-state into transport currents.
Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.
In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K\(^+\)-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca\(^{2+}\) levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca\(^{2+}\), can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K\(^{+}\) transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K\(^+\)-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca\(^{2+}\)- and voltage-induced electrical excitability to the central organelle of plant cells.
In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.
Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play an important role in cellular and long distance signalling in plants. While the function of the plasma membrane in cytosolic Ca\(^{2+}\) signalling has been intensively studied, the role of the vacuolar membrane remains elusive.
A newly developed vacuolar voltage clamp technique was used in combination with live-cell imaging, to study the role of the vacuolar membrane in Ca\(^{2+}\) and pH homeostasis of bulging root hair cells of Arabidopsis.
Depolarisation of the vacuolar membrane caused a rapid increase in the Ca\(^{2+}\) concentration and alkalised the cytosol, while hyperpolarisation led to the opposite responses.
The relationship between the vacuolar membrane potential, the cytosolic pH and Ca2+ concentration suggests that a vacuolar H\(^{+}\)/Ca\(^{2+}\) exchange mechanism plays a central role in cytosolic Ca2+ homeostasis. Mathematical modelling further suggests that the voltage-dependent vacuolar Ca\(^{2+}\) homeostat could contribute to calcium signalling when coupled to a recently discovered K\(^{+}\) channel-dependent module for electrical excitability of the vacuolar membrane.
Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads.
We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function.
Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations.
Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.
Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown.
We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1.
We show that within 1 min, prior to stomatal closure, O\(_{3}\) triggered a drop in whole-plant CO\(_{2}\) uptake. Within this early phase, O\(_{3}\) pulses (200–1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O\(_{3}\) induced cell death, systemic Ca\(^{2+}\) signals and an irreversible drop in stomatal conductance and photosynthetic capacity.
We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca\(^{2+}\)) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.
DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors
(2013)
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10\(^{-5}\) m s\(^{-1}\) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm\(^{-2}\)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures.