Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Journal article (7)
Language
- English (7)
Keywords
Institute
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (6)
- Kinderklinik und Poliklinik (2)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (2)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (1)
- Frauenklinik und Poliklinik (1)
- Institut für Klinische Epidemiologie und Biometrie (1)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (1)
- Klinik für Anaesthesiologie (bis 2003) (1)
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II) (1)
- Neurologische Klinik und Poliklinik (1)
Background
Even though bleeding and thromboembolic events are major complications of extracorporeal membrane oxygenation (ECMO), data on the incidence of venous thrombosis (VT) and thromboembolism (VTE) under ECMO are scarce. This study analyzes the incidence and predictors of VTE in patients treated with ECMO due to respiratory failure.
Methods
Retrospective analysis of patients treated on ECMO in our center from 04/2010 to 11/2015. Patients with thromboembolic events prior to admission were excluded. Diagnosis was made by imaging in survivors and postmortem examination in deceased patients.
Results
Out of 102 screened cases, 42 survivors and 21 autopsy cases [mean age 46.0 ± 14.4 years; 37 (58.7 %) males] fulfilling the above-mentioned criteria were included. Thirty-four patients (54.0 %) underwent ECMO therapy due to ARDS, and 29 patients (46.0 %) with chronic organ failure were bridged to lung transplantation. Despite systemic anticoagulation at a mean PTT of 50.6 ± 12.8 s, [VT/VTE 47.0 ± 12.3 s and no VT/VTE 53.63 ± 12.51 s (p = 0.037)], VT and/or VTE was observed in 29 cases (46.1 %). The rate of V. cava thrombosis was 15/29 (51.7 %). Diagnosis of pulmonary embolism prevailed in deceased patients [5/21 (23.8 %) vs. 2/42 (4.8 %) (p = 0.036)]. In a multivariable analysis, only aPTT and time on ECMO predicted VT/VTE. There was no difference in the incidence of clinically diagnosed VT in ECMO survivors and autopsy findings.
Conclusions
Venous thrombosis and thromboembolism following ECMO therapy are frequent. Quality of anticoagulation and ECMO runtime predicted thromboembolic events.
"
Background:
The use of venoarterial extracorporeal membrane oxygenation (va-ECMO) via peripheral cannulation for septic shock is limited by blood flow and increased afterload for the left ventricle.
Case Report:
A 15-year-old girl with acute myelogenous leukemia, suffering from severe septic and cardiogenic shock, was treated by venoarterial extracorporeal membrane oxygenation (va-ECMO). Sufficient extracorporeal blood flow matching the required oxygen demand could only be achieved by peripheral cannulation of both femoral arteries. Venous drainage was performed with a bicaval cannula inserted via the left V. femoralis. To accomplish left ventricular unloading, an additional drainage cannula was placed in the left atrium via percutaneous atrioseptostomy (va-va-ECMO). Cardiac function recovered and the girl was weaned from the ECMO on day 6. Successful allogenic stem cell transplantation took place 2 months later.
Conclusions:
In patients with vasoplegic septic shock and impaired cardiac contractility, double peripheral venoarterial extracorporeal membrane oxygenation (va-va-ECMO) with transseptal left atrial venting can by a lifesaving option.
Background
Postoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs. Postoperative atelectasis of dorsal lung regions as a common PPC has been described before, but its clinical relevance is insufficiently examined. Pulmonary electrical impedance tomography (EIT) enables the bedside visualization of regional ventilation in real-time within a transversal section of the lung. Dorsal atelectasis or effusions might cause a ventral redistribution of ventilation. We hypothesized the existence of ventral redistribution in spontaneously breathing patients during their recovery from abdominal and peripheral surgery and that vital capacity is reduced if regional ventilation shifts to ventral lung regions.
Methods
This prospective observational study included 69 adult patients undergoing elective surgery with an expected intermediate or high risk for PPCs. Patients undergoing abdominal and peripheral surgery were recruited to obtain groups of equal size. Patients received general anesthesia with and without additional regional anesthesia. On the preoperative, the first and the third postoperative day, EIT was performed at rest and during spirometry (forced breathing). The center of ventilation in dorso-ventral direction (COVy) was calculated.
Results
Both groups received intraoperative low tidal volume ventilation. Postoperative ventral redistribution of ventilation (forced breathing COVy; preoperative: 16.5 (16.0–17.3); first day: 17.8 (16.9–18.2), p < 0.004; third day: 17.4 (16.2–18.2), p = 0.020) and decreased forced vital capacity in percentage of predicted values (FVC%predicted) (median: 93, 58, 64%, respectively) persisted after abdominal surgery. In addition, dorsal to ventral shift was associated with a decrease of the FVC%predicted on the third postoperative day (r = − 0.66; p < 0.001). A redistribution of pulmonary ventilation was not observed after peripheral surgery. FVC%predicted was only decreased on the first postoperative day (median FVC%predicted on the preoperative, first and third day: 85, 81 and 88%, respectively). In ten patients occurred pulmonary complications after abdominal surgery also in two patients after peripheral surgery.
Conclusions
After abdominal surgery ventral redistribution of ventilation persisted up to the third postoperative day and was associated with decreased vital capacity. The peripheral surgery group showed only minor changes in vital capacity, suggesting a role of the location of surgery for postoperative redistribution of pulmonary ventilation.
Background:
Regional ventilation of the lung can be visualized by pulmonary electrical impedance tomography (EIT). The aim of this study was to examine the post‐operative redistribution of regional ventilation after lung surgery dependent on the side of surgery and its association with forced vital capacity.
Methods:
In this prospective, observational cohort study 13 patients undergoing right and 13 patients undergoing left‐sided open or video‐thoracoscopic procedures have been investigated. Pre‐operative measurements with EIT and spirometry were compared with data obtained 3 days post‐operation. The center of ventilation (COV) within a 32 × 32 pixel matrix was calculated from EIT data. The transverse axis coordinate of COV, COVx (left/right), was modified to COVx′ (ipsilateral/contralateral). Thus, COVx′ shows a negative change if ventilation shifts contralateral independent of the side of surgery. This enabled testing with two‐way ANOVA for repeated measurements (side, time).
Results:
The perioperative shift of COVx′ was dependent on the side of surgery (P = .007). Ventilation shifted away from the side of surgery after the right‐sided surgery (COVx′‐1.97 pixel matrix points, P < .001), but not after the left‐sided surgery (COVx′‐0.61, P = .425). The forced vital capacity (%predicted) decreased from 94 (83‐109)% (median [quartiles]; [left‐sided]) and 89 (80‐97)% (right‐sided surgery) to 61 (59‐66)% and 62 (40‐72)% (P < .05), respectively. The perioperative changes in forced vital capacity (%predicted) were weakly associated with the shift of COVx′.
Conclusion:
Only after right‐sided lung surgery, EIT showed reduced ventilation on the side of surgery while vital capacity was markedly reduced in both groups.
Background
The epidural route is still considered the gold standard for labour analgesia, although it is not without serious consequences when incorrect placement goes unrecognized, e.g. in case of intravascular, intrathecal and subdural placements. Until now there has not been a viable alternative to epidural analgesia especially in view of the neonatal outcome and the need for respiratory support when long-acting opioids are used via the parenteral route. Pethidine and meptazinol are far from ideal having been described as providing rather sedation than analgesia, affecting the cardiotocograph (CTG), causing fetal acidosis and having active metabolites with prolonged half-lives especially in the neonate. Despite these obvious shortcomings, intramuscular and intravenously administered pethidine and comparable substances are still frequently used in delivery units.
Since the end of the 90ths remifentanil administered in a patient-controlled mode (PCA) had been reported as a useful alternative for labour analgesia in those women who either don’t want, can’t have or don’t need epidural analgesia.
Discussion
In view of the need for conversion to central neuraxial blocks and the analgesic effect remifentanil has been demonstrated to be superior to pethidine. Despite being less effective in terms of the resulting pain scores, clinical studies suggest that the satisfaction with analgesia may be comparable to that obtained with epidural analgesia. Owing to this fact, remifentanil has gained a place in modern labour analgesia in many institutions.
However, the fact that remifentanil may cause harm should not be forgotten when the use of this potent mu-agonist is considered for the use in labouring women. In the setting of one-to-one midwifery care, appropriate monitoring and providing that enough experience exists with this potent opioid and the treatment of potential complications, remifentanil PCA is a useful option in addition to epidural analgesia and other central neuraxial blocks. Already described serious consequences should remind us not refer to remifentanil PCA as a “poor man’s epidural” and to safely administer remifentanil with an appropriate indication.
Summary
Therefore, the authors conclude that economic considerations and potential cost-savings in conjunction with remifentanil PCA may not be appropriate main endpoints when studying this valuable method for labour analgesia.
Background. Missed or delayed detection of progressive neuronal damage after traumatic brain injury (TBI) may have negative impact on the outcome. We investigated whether routine follow-up CT is beneficial in sedated and mechanically ventilated trauma patients. Methods. The study design is a retrospective chart review. A routine follow-up cCT was performed 6 hours after the admission scan. We defined 2 groups of patients, group I: patients with equal or recurrent pathologies and group II: patients with new findings or progression of known pathologies. Results. A progression of intracranial injury was found in 63 patients (42%) and 18 patients (12%) had new findings in cCT 2 (group II). In group II a change in therapy was found in 44 out of 81 patients (54%). 55 patients with progression or new findings on the second cCT had no clinical signs of neurological deterioration. Of those 24 patients (44%) had therapeutic consequences due to the results of the follow-up cCT. Conclusion. We found new diagnosis or progression of intracranial pathology in 54% of the patients. In 54% of patients with new findings and progression of pathology, therapy was changed due to the results of follow-up cCT. In trauma patients who are sedated and ventilated for different reasons a routine follow-up CT is beneficial.
Background
Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients.
Methods
673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival.
Results
Most patients were between 50 and 70 years of age. PaO\(_{2}\)/FiO\(_{2}\) ratio prior to ECMO was 72 mmHg (IQR: 58–99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41–0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28–1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events.
Conclusions
Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival.