• Contact
    • Imprint
    • Sitemap
      • Deutsch

UNIWUE UBWUE Universitätsbibliothek

  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen

Refine

Has Fulltext

  • yes (22)

Is part of the Bibliography

  • yes (22)

Year of publication

  • 2020 (1)
  • 2019 (5)
  • 2018 (2)
  • 2017 (1)
  • 2016 (2)
  • 2015 (2)
  • 2014 (2)
  • 2013 (2)
  • 2012 (4)
  • 2010 (1)
+ more

Document Type

  • Journal article (22)

Language

  • English (22)

Keywords

  • glioblastoma multiforme (5)
  • Medizin (4)
  • recurrence (3)
  • glioma (2)
  • relapse (2)
  • 2-photon microscopy (1)
  • 3D fluoroscopy (1)
  • Animal models (1)
  • Astrocytic tumor (1)
  • Bevacizumab (1)
+ more

Author

  • Ernestus, Ralf-Ingo (22)
  • Löhr, Mario (11)
  • Hagemann, Carsten (10)
  • Linsenmann, Thomas (10)
  • Westermaier, Thomas (9)
  • Kessler, Almuth F. (8)
  • Stetter, Christian (7)
  • Monoranu, Camelia M. (6)
  • Vince, Giles H. (5)
  • Raslan, Furat (4)
+ more

Institute

  • Neurochirurgische Klinik und Poliklinik (14)
  • Pathologisches Institut (8)
  • Neurologische Klinik und Poliklinik (7)
  • Klinik und Poliklinik für Nuklearmedizin (3)
  • Frauenklinik und Poliklinik (2)
  • Abteilung für Neuroradiologie (1)
  • Kinderklinik und Poliklinik (1)
  • Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (1)
  • Physiologisches Institut (1)
  • Rudolf-Virchow-Zentrum (1)
+ more

22 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Expression-analysis of the human endogenous retrovirus HERV-K in human astrocytic tumors (2014)
Hagemann, Carsten ; Kessler, Almuth Friederike ; Wiesner, Miriam ; Denner, Joachim ; Kämmerer, Ulrike ; Vince, Giles Hamilton ; Linsenmann, Thomas ; Löhr, Mario ; Ernestus, Ralf-Ingo
Background The human endogenous retrovirus K (HERV-K) has been acquired by the genome of human ancestors million years ago. It is the most complete of the HERVs with transcriptionally active gag, pol and env genes. Splice variants of env, which are rec, 1.5 kb transcript and Np9 have been suggested to be tumorigenic. Transcripts of HERV-K have been detected in a multitude of human cancers. However, no such reports are available concerning glioblastomas (GBM), the most common malignant brain tumor in adults. Patients have a limited prognosis of 14.6 months in median, despite standard treatment. Therefore, we elucidated whether HERV-K transcripts could be detected in these tumors and serve as new molecular target for treatment. Findings We analyzed human GBM cell lines, tissue samples from patients and primary cell cultures of different passages for HERV-K full length mRNA and env, rec and 1.5 kb transcripts. While the GBM cell lines U138, U251, U343 and GaMG displayed weak and U87 strong expression of the full length HERV-K, the splice products could not be detected, despite a weak expression of env mRNA in U87 cells. Very few tissue samples from patients showed weak expression of env mRNA, but none of the rec or 1.5 kb transcripts. Primary cells expressed the 1.5 kb transcript weakly in early passages, but lost HERV-K expression with extended culture time. Conclusions These data suggest that HERV-K splice products do not play a role in human malignant gliomas and therefore, are not suitable as targets for new therapy regimen.
Long-term tumor control of spinal dissemination of cerebellar glioblastoma multiforme by combined adjuvant bevacizumab antibody therapy: a case report (2014)
Linsenmann, Thomas ; Monoranu, Camelia M. ; Vince, Giles H. ; Westermaier, Thomas ; Hagemann, Carsten ; Kessler, Almuth F. ; Ernestus, Ralf-Ingo ; Löhr, Mario
Background Glioblastoma multiforme located in the posterior fossa is extremely rare with a frequency up to 3.4%. Compared with glioblastoma of the hemispheres the prognosis of infratentorial glioblastoma seems to be slightly better. Absence of brainstem invasion and low expression rates of epidermal growth factor receptor are described as factors for long-time survival due to the higher radiosensitivity of these tumors. Case presentation In this case study, we report a German female patient with an exophytic glioblastoma multiforme arising from the cerebellar tonsil and a secondary spinal manifestation. Furthermore, the tumor showed no O (6)-Methylguanine-DNA methyltransferase promotor-hypermethylation and no isocitrate dehydrogenase 1 mutations. All these signs are accompanied by significantly shorter median overall survival. A long-term tumor control of the spinal metastases was achieved by a combined temozolomide/bevacizumab and irradiation therapy, as part of a standard care administered by the treating physician team. Conclusion To our knowledge this is the first published case of a combined cerebellar exophytic glioblastoma with a subsequent solid spinal manifestation. Furthermore this case demonstrates a benefit undergoing this special adjuvant therapy regime in terms of overall survival. Due to the limited overall prognosis of the disease, spinal manifestations of glioma are rarely clinically relevant. The results of our instructive case, however, with a positive effect on both life quality and survival warrant treating future patients in the frame of a prospective clinical study.
First Description of Reduced Pyruvate Dehydrogenase Enzyme Activity Following Subarachnoid Hemorrhage (SAH) (2017)
Lilla, Nadine ; Füllgraf, Hannah ; Stetter, Christian ; Köhler, Stefan ; Ernestus, Ralf-Ingo ; Westermaier, Thomas
Object: Several previous studies reported metabolic derangements and an accumulation of metabolic products in the early phase of experimental subarachnoid hemorrhage (SAH), which may contribute to secondary brain damage. This may be a result of deranged oxygen utilization due to enzymatic dysfunction in aerobic glucose metabolism. This study was performed to investigate, if pyruvate dehydrogenase enzyme (PDH) is affected in its activity giving further hints for a derangement of oxidative metabolism. Methods: Eighteen male Sprague-Dawley rats were randomly assigned to one of two experimental groups (n = 9): (1) SAH induced by the endovascular filament model and (2) sham-operated controls. Mean arterial blood pressure (MABP), intracranial pressure (ICP), and local cerebral blood flow (LCBF; laser-Doppler flowmetry) were continuously monitored from 30 min before until 3 h after SAH. Thereafter, the animals were sacrificed and PDH activity was measured by ELISA. Results: PDH activity was significantly reduced in animals subjected to SAH compared to controls. Conclusion: The results of this study demonstrate for the first time a reduction of PDH activity following SAH, independent of supply of substrates and may be an independent factor contributing to a derangement of oxidative metabolism, failure of oxygen utilization, and secondary brain damage.
Focal brain trauma in the cryogenic lesion model in mice (2012)
Raslan, Furat ; Albert-Weißenberger, Christiane ; Ernestus, Ralf-Ingo ; Kleinschnitz, Christoph ; Sirén, Anna-Leena
The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location.
Magnesium treatment for neuroprotection in ischemic diseases of the brain (2013)
Westermaier, Thomas ; Stetter, Christian ; Kunze, Ekkehard ; Willner, Nadine ; Raslan, Furat ; Vince, Giles H. ; Ernestus, Ralf-Ingo
This article reviews experimental and clinical data on the use of magnesium as a neuroprotective agent in various conditions of cerebral ischemia. Whereas magnesium has shown neuroprotective properties in animal models of global and focal cerebral ischemia, this effect could not be reproduced in a large human stroke trial. These conflicting results may be explained by the timing of treatment. While treatment can be started before or early after ischemia in experimental studies, there is an inevitable delay of treatment in human stroke. Magnesium administration to women at risk for preterm birth has been investigated in several randomized controlled trials and was found to reduce the risk of neurological deficits for the premature infant. Postnatal administration of magnesium to babies after perinatal asphyxia has been studied in a number of controlled clinical trials. The results are promising but the trials have, so far, been underpowered. In aneurysmal subarachnoid hemorrhage (SAH), cerebral ischemia arises with the onset of delayed cerebral vasospasm several days after aneurysm rupture. Similar to perinatal asphyxia in impending preterm delivery, treatment can be started prior to ischemia. The results of clinical trials are conflicting. Several clinical trials did not show an additive effect of magnesium with nimodipine, another calcium antagonist which is routinely administered to SAH patients in many centers. Other trials found a protective effect after magnesium therapy. Thus, it may still be a promising substance in the treatment of secondary cerebral ischemia after aneurysmal SAH. Future prospects of magnesium therapy are discussed.
An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice (2013)
Sirén, Anna-Leena ; Stetter, Christian ; Hirschberg, Markus ; Nieswandt, Bernhard ; Ernestus, Ralf-Ingo ; Heckmann, Manfred
Introduction Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex. Methods Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45–60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100–200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis. Results Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging. Conclusions Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury.
Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures (2010)
Hagemann, Carsten ; Anacker, Jelena ; Haas, Stefanie ; Riesner, Daniela ; Schömig, Beate ; Ernestus, Ralf-Ingo ; Vince, Giles H.
Background: Glioblastomas (GBM), the most frequent malignant brain tumors in adults, are characterized by an aggressive local growth pattern and highly invasive tumor cells. This invasion is facilitated by expression of matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases. They mediate the degradation of protein components of the extracellular matrix. Twenty-three family members are known. Elevated levels of several of them have been reported in GBM. GBM cell-lines are used for in vitro studies of cell migration and invasion. Therefore, it is essential to know their MMP expression patterns. Only limited data for some of the cell-lines are published, yet. To fill the gaps in our knowledge would help to choose suitable model systems for analysis of regulation and function of MMPs during GBM tumorigenesis, cell migration and invasion. Findings: We analysed MMP-1, -8, -9, -10, -11, -13, -17, -19, -20, -21, -23, -24, -26, -27, and MMP-28 expression in seven GBM cell-lines (SNB-19, GaMG, U251, U87, U373, U343, U138) and in four primary cell cultures by semiquantitative RT-PCR, followed changes in the MMP expression pattern with increasing passages of cell culture and examined the influence of TNF-a and TGF-b1 stimulation on the expression of selected MMPs in U251 and U373 cells. MMP-13, -17, -19 and -24 were expressed by all analyzed cell-lines, whereas MMP-20 and MMP-21 were not expressed by any of them. The other MMPs showed variable expression, which was dependent on passage number. Primary cells displayed a similar MMP-expression pattern as the cell-lines. In U251 and U373 cells expression of MMP-9 and MMP-19 was stimulated by TNF-a. MMP-1 mRNA expression was significantly increased in U373 cells, but not in U251 cells by this cytokine. Whereas TGF-b1 had no impact on MMP expression in U251 cells, it significantly induced MMP-11 and MMP-24 expression in U373 cells. Conclusions: Literature-data and our own results suggest that the expression pattern of MMPs is highly variable, dependent on the cell-line and the cell-culture conditions used and that also regulation of MMP expression by cytokines is cell-line dependent. This is of high impact for the transfer of cell-culture experiments to clinical implementation.
Intraoperative Myelography in Cervical Multilevel Stenosis Using 3D Rotational Fluoroscopy: Assessment of Feasibility and Image Quality (2015)
Westermaier, Thomas ; Koehler, Stefan ; Linsenmann, Thomas ; Kinderlen, Michael ; Pakos, Paul ; Ernestus, Ralf-Ingo
Background. Intraoperative myelography has been reported for decompression control in multilevel lumbar disease. Cervical myelography is technically more challenging. Modern 3D fluoroscopy may provide a new opportunity supplying multiplanar images. This study was performed to determine the feasibility and image quality of intraoperative cervical myelography using a 3D fluoroscope. Methods. The series included 9 patients with multilevel cervical stenosis. After decompression, 10 mL of water-soluble contrast agent was administered via a lumbar drainage and the operating table was tilted. Thereafter, a 3D fluoroscopy scan (O-Arm) was performed and visually evaluated. Findings. The quality of multiplanar images was sufficient to supply information about the presence of residual stenosis. After instrumentation, metal artifacts lowered image quality. In 3 cases, decompression was continued because myelography depicted residual stenosis. In one case, anterior corpectomy was not completed because myelography showed sufficient decompression after 2-level discectomy. Interpretation. Intraoperative myelography using 3D rotational fluoroscopy is useful for the control of surgical decompression in multilevel spinal stenosis providing images comparable to postmyelographic CT. The long duration of contrast delivery into the cervical spine may be solved by preoperative contrast administration. The method is susceptible to metal artifacts and, therefore, should be applied before metal implants are placed.
Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy? (2015)
Lapa, Constantin ; Linsenmann, Thomas ; Lückerath, Katharina ; Samnick, Samuel ; Herrmann, Ken ; Stoffer, Carolin ; Ernestus, Ralf-Ingo ; Buck, Andreas K. ; Löhr, Mario ; Monoranu, Camelia-Maria
Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.
Brain edema formation correlates with perfusion deficit during the first six hours after experimental subarachnoid hemorrhage in rats (2012)
Westermaier, Thomas ; Stetter, Christian ; Raslan, Furat ; Vinc, Giles Hamilton ; Ernestus, Ralf-Ingo
Background: Severe brain edema is observed in a number of patients suffering from subarachnoid hemorrhage (SAH). Little is known about its pathogenesis and time-course in the first hours after SAH. This study was performed to investigate the development of brain edema and its correlation with brain perfusion after experimental SAH. Methods: Male Sprague–Dawley rats, randomly assigned to one of six groups (n = 8), were subjected to SAH using the endovascular filament model or underwent a sham operation. Animals were sacrificed 15, 30, 60, 180 or 360 minutes after SAH. Intracranial pressure (ICP), mean arterial blood pressure (MABP), cerebral perfusion pressure (CPP) and bilateral local cerebral blood flow (LCBF) were continuously measured. Brain water content (BWC) was determined by the wet/dry-weight method. Results: After SAH, CPP and LCBF rapidly decreased. The decline of LCBF markedly exceeded the decline of CPP and persisted until the end of the observation period. BWC continuously increased. A significant correlation was observed between the BWC and the extent of the perfusion deficit in animals sacrificed after 180 and 360 minutes. Conclusions: The significant correlation with the perfusion deficit after SAH suggests that the development of brain edema is related to the extent of ischemia and acute vasoconstriction in the first hours after SAH.
  • 1 to 10

DINI-Zertifikat     OPUS4 Logo