Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 1999 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
Institute
The mode of action of phloretin and its analogs on the permeability of natural membranes for neutral and charged molecules, such as urea, glucose and chloride has been characterized 25 years ago. In contrast to signal molecules with primary effects on transport systems of natural membranes, phloretin also affects model membranes, i.e., artificial membranes, which do not contain proteins. Since the dipole potential reducing effect of phloretin on mono- and bilayers has been found, it became clear that its primary effect must be a biophysical one: phloretin adsorbs to lipid layers and changes biophysical parameters of these layers. The aim of this work was the characterization of the interaction between the surface-active molecule phloretin and artificial lipid layers. We were able to describe structural and functional parameters of the model systems mono- and bilayer as functions of one or few variables. One of these parameters, the dipole potential, measured as a function of the aqueous phloretin concentration, allowed a critical examination of the Langmuir adsorption model that has been postulated for the interaction between phloretin and lipid layers. Surface pressure versus area per lipid molecule isotherms and surface (dipole) potential change versus area per lipid molecule isotherms, measured at lipid monolayers, allowed a structural description of the phloretin-lipid interaction: phloretin integrates into monolayers dependent on the surface pressure and the phase state of the lipid. Calorimetric measurements confirmed the integration of phloretin into membranes because of the strong decrease of the phase transition temperature, but they also showed that the cooperativity of phase transition is hardly affected, even at very high amounts of phloretin in the membrane. Obviously the interaction between phloretin and lipids is restricted to the head groups, an integration into the hydrocarbon layer is unlikely. 2H NMR measurements with spherical unilamellar vesicles of headgroup-deuterated lipid showed changed quadrupolar splittings indicating the interaction between phloretin and headgroups of the lipids.