Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Language
- English (6)
Keywords
- experimental design (2)
- measures (2)
- Regelverstoß (1)
- Simon task (1)
- Soziale Norm (1)
- action observation (1)
- auditory timer (1)
- biomarkers UPA (1)
- dishonest responding (1)
- expression (1)
Institute
The objective was to determine the mRNA expression and protein levels of uPA system components in tissue specimens and serum samples, respectively, from prostate cancer (PCa) patients and to assess their association with clinicopathological parameters and overall survival (OS). The mRNA expression levels of uPA, its receptor (uPAR), and its inhibitor type 1 (PAI-1) were analyzed in corresponding malignant and adjacent nonmalignant tissue specimens from 132 PCa patients by quantitative PCR. Preoperative serum samples from 81 PCa patients were analyzed for antigen levels of uPA system members by ELISA. RNA levels of uPA system components displayed significant correlations with each other in the tumor tissues. A significantly decreased uP AmRNA expression in PCa compared to the corresponding nonmalignant tissue was detected. High uPA mRNA level was significantly associated with a high Gleason score. Elevated concentration of soluble uPAR (suPAR) in serum was significantly associated with a poor OS of PCa patients (P = 0.022). PCa patients with high suPAR levels have a significantly higher risk of death (multivariate Cox's regression analysis; IIR - 7.12, P - 0.027). The association of high suPAR levels with poor survival of PCa patients suggests a prognostic impact of suPAR levels in serum of cancer patients.
Social life is organized around rules and norms. The present experiments investigate the cognitive architecture of rule violations. To do so, a setting with arbitrary rules that had to be followed or broken was developed, and breaking these rules did not have any negative consequences. Removed from any social influences that might further encourage or hinder the rule breaker, results suggest that simply labeling a behavior as a rule violation comes with specific costs: They are more difficult to plan and come with specific behavioral markers during execution. In essence, rule violations resemble rule negations, but they also trigger additional processes.
The question of what makes rule violations more difficult than rule inversions is the major focus of the remaining experiments. These experiments revealed negative affective consequences of rule violation and rule inversions alike, while rule violations additionally prime authority-related concepts, thus sensitizing towards authority related stimuli.
Next, the question how these burdens of non-conformity can be mitigated was investigated, and the influence of having executed the behavior in question frequently and recently was tested in both negations and rule violations. The burdens of non-conformity can best be reduced by a combination of having violated/negated a rule very frequently and very recently. Transfer from another task, however, could not be identified.
To conclude, a model that accounts for the data that is currently presented is proposed. As a variant of a task switching model, it describes the cognitive processes that were investigated and highlights unique processing steps that rule violations seem to require.
When telling a lie, humans might engage in stronger monitoring of their behavior than when telling the truth. Initial evidence has indeed pointed towards a stronger recruitment of capacity-limited monitoring processes in dishonest than honest responding, conceivably resulting from the necessity to overcome automatic tendencies to respond honestly. Previous results suggested monitoring to be confined to response execution, however, whereas the current study goes beyond these findings by specifically probing for post-execution monitoring. Participants responded (dis)honestly to simple yes/no questions in a first task and switched to an unrelated second task after a response–stimulus interval of 0 ms or 1000 ms. Dishonest responses did not only prolong response times in Task 1, but also in Task 2 with a short response–stimulus interval. These findings support the assumption that increased monitoring for dishonest responses extends beyond mere response execution, a mechanism that is possibly tuned to assess the successful completion of a dishonest act.
Design choices: Empirical recommendations for designing two-dimensional finger-tracking experiments
(2020)
The continuous tracking of mouse or finger movements has become an increasingly popular research method for investigating cognitive and motivational processes such as decision-making, action-planning, and executive functions. In the present paper, we evaluate and discuss how apparently trivial design choices of researchers may impact participants’ behavior and, consequently, a study’s results. We first provide a thorough comparison of mouse- and finger-tracking setups on the basis of a Simon task. We then vary a comprehensive set of design factors, including spatial layout, movement extent, time of stimulus onset, size of the target areas, and hit detection in a finger-tracking variant of this task. We explore the impact of these variations on a broad spectrum of movement parameters that are typically used to describe movement trajectories. Based on our findings, we suggest several recommendations for best practice that avoid some of the pitfalls of the methodology. Keeping these recommendations in mind will allow for informed decisions when planning and conducting future tracking experiments.
Voluntary actions and causally linked sensory stimuli are perceived to be shifted towards each other in time. This so-called temporal binding is commonly assessed in paradigms using the Libet Clock. In such experiments, participants have to estimate the timing of actions performed or ensuing sensory stimuli (usually tones) by means of a rotating clock hand presented on a screen. The aforementioned task setup is however ill-suited for many conceivable setups, especially when they involve visual effects. To address this shortcoming, the line of research presented here establishes an alternative measure for temporal binding by using a sequence of timed sounds. This method uses an auditory timer, a sequence of letters presented during task execution, which serve as anchors for temporal judgments. In four experiments, we manipulated four design factors of this auditory timer, namely interval length, interval filling, sequence predictability, and sequence length, to determine the most effective and economic method for measuring temporal binding with an auditory timer.
When observing another agent performing simple actions, these actions are systematically remembered as one’s own after a brief period of time. Such observation inflation has been documented as a robust phenomenon in studies in which participants passively observed videotaped actions. Whether observation inflation also holds for direct, face-to-face interactions is an open question that we addressed in two experiments. In Experiment 1, participants commanded the experimenter to carry out certain actions, and they indeed reported false memories of self-performance in a later memory test. The effect size of this inflation effect was similar to passive observation as confirmed by Experiment 2. These findings suggest that observation inflation might affect action memory in a broad range of real-world interactions.